Spatiotemporal Nano-Regulator Unleashes Anti-Tumor Immunity by Overcoming Dendritic Cell Tolerance and T Cell Exhaustion in Tumor-Draining Lymph Nodes

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-11 DOI:10.1002/adma.202412141
Ruonan Wang, Huixin Li, Shasha He, Yuanji Feng, Cong Liu, Kai Hao, Danhua Zhou, Xiaoyuan Chen, Huayu Tian
{"title":"Spatiotemporal Nano-Regulator Unleashes Anti-Tumor Immunity by Overcoming Dendritic Cell Tolerance and T Cell Exhaustion in Tumor-Draining Lymph Nodes","authors":"Ruonan Wang, Huixin Li, Shasha He, Yuanji Feng, Cong Liu, Kai Hao, Danhua Zhou, Xiaoyuan Chen, Huayu Tian","doi":"10.1002/adma.202412141","DOIUrl":null,"url":null,"abstract":"Lymph nodes are crucial immune foci as the primary target for cancer immunotherapy. However, the anti-tumor functions of tumor-draining lymph nodes (TDLNs) are critically suppressed by tumors. Here, a novel spatiotemporal nano-regulator is presented, designed to modulate the dendritic cells (DCs) in TDLNs, establishing a supportive niche for immune surveillance. The DC-mediated nano-regulator (DNR) is established by the self-assembly of an imidazoquinoline (IMDQ) prodrug, inhibitory immune checkpoint (ICP) siRNA, and mannan (a TLR4 agonist). This unique design leverages the spatiotemporal activation of TLR4 and TLR7/8, thereby optimizing DC maturation and cytokine production. This further promotes efficient T cell priming. Simultaneously, the ICP-targeting siRNA mitigates the tolerogenic effects induced by tumor-derived factors and TLR activation, preventing T cell exhaustion. In essence, DNR facilitates potent remodeling of TDLNs and the tumor microenvironment, activating the anti-tumor immunity cascade. When combined with vaccines, DNR greatly promotes tumor regression and the establishment of long-term immunological memory.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"41 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412141","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lymph nodes are crucial immune foci as the primary target for cancer immunotherapy. However, the anti-tumor functions of tumor-draining lymph nodes (TDLNs) are critically suppressed by tumors. Here, a novel spatiotemporal nano-regulator is presented, designed to modulate the dendritic cells (DCs) in TDLNs, establishing a supportive niche for immune surveillance. The DC-mediated nano-regulator (DNR) is established by the self-assembly of an imidazoquinoline (IMDQ) prodrug, inhibitory immune checkpoint (ICP) siRNA, and mannan (a TLR4 agonist). This unique design leverages the spatiotemporal activation of TLR4 and TLR7/8, thereby optimizing DC maturation and cytokine production. This further promotes efficient T cell priming. Simultaneously, the ICP-targeting siRNA mitigates the tolerogenic effects induced by tumor-derived factors and TLR activation, preventing T cell exhaustion. In essence, DNR facilitates potent remodeling of TDLNs and the tumor microenvironment, activating the anti-tumor immunity cascade. When combined with vaccines, DNR greatly promotes tumor regression and the establishment of long-term immunological memory.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
麦克林 Fluorescein isothiocyanate isomer I
麦克林 Fluorescein isothiocyanate isomer I
麦克林 triethylamine
麦克林 triethylamine
阿拉丁 EDTA
阿拉丁 EDTA
阿拉丁 Hydroxylamine
阿拉丁 Hydroxylamine
Sigma Triphosgene
Sigma Triphosgene
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
A Single-Pixel Event Photoactive Device for Real-Time, In-Sensor Spatiotemporal Optical Information Processing (Adv. Mater. 1/2025) Durable Organic Coating-Free Superhydrophobic Metal Surface by Paracrystalline State Formation (Adv. Mater. 1/2025) Enhancing Resistance to Wetting Transition through the Concave Structures (Adv. Mater. 1/2025) One-Step Synthesis of Closed-Loop Recyclable and Thermally Superinsulating Polyhexahydrotriazine Aerogels (Adv. Mater. 1/2025) Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics (Adv. Mater. 1/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1