Soft Contrastive Representation Learning for Cloud-Particle Images Captured In-Flight by the New HVPS-4 Airborne Probe

Yousef Yassin;Anthony Fuller;Keyvan Ranjbar;Kenny Bala;Leonid Nichman;James R. Green
{"title":"Soft Contrastive Representation Learning for Cloud-Particle Images Captured In-Flight by the New HVPS-4 Airborne Probe","authors":"Yousef Yassin;Anthony Fuller;Keyvan Ranjbar;Kenny Bala;Leonid Nichman;James R. Green","doi":"10.1109/LGRS.2024.3506483","DOIUrl":null,"url":null,"abstract":"Cloud properties underpin accurate climate modeling and are often derived from the individual particles comprising a cloud. Studying these cloud particles is challenging due to their intricate shapes, called “habits,” and manual classification via probe-generated images is time-consuming and subjective. We propose a novel method for habit representation learning that uses minimal labeled data by leveraging self-supervised learning (SSL) with Vision Transformers (ViTs) on a newly acquired dataset of 124000 images captured by the novel high-volume precipitation spectrometer ver. 4 (HVPS-4) probe. Our approach significantly outperforms ImageNet pretraining by 48% on a 293-sample annotated dataset. Notably, we present the first SSL scheme for learning habit representations, leveraging data collected in flight from the probe. Our results demonstrate that self-supervised pretraining significantly improves habit classification even when using single-channel HVPS-4 data. We achieve further gains using sequential views and a soft contrastive objective tailored for sequential, in-flight measurements. Our work paves the way for applying SSL to multiview and multiscale data from advanced cloud-particle imaging probes, enabling comprehensive characterization of the flight environment. We publicly release data, code, and models associated with this study.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10783433/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud properties underpin accurate climate modeling and are often derived from the individual particles comprising a cloud. Studying these cloud particles is challenging due to their intricate shapes, called “habits,” and manual classification via probe-generated images is time-consuming and subjective. We propose a novel method for habit representation learning that uses minimal labeled data by leveraging self-supervised learning (SSL) with Vision Transformers (ViTs) on a newly acquired dataset of 124000 images captured by the novel high-volume precipitation spectrometer ver. 4 (HVPS-4) probe. Our approach significantly outperforms ImageNet pretraining by 48% on a 293-sample annotated dataset. Notably, we present the first SSL scheme for learning habit representations, leveraging data collected in flight from the probe. Our results demonstrate that self-supervised pretraining significantly improves habit classification even when using single-channel HVPS-4 data. We achieve further gains using sequential views and a soft contrastive objective tailored for sequential, in-flight measurements. Our work paves the way for applying SSL to multiview and multiscale data from advanced cloud-particle imaging probes, enabling comprehensive characterization of the flight environment. We publicly release data, code, and models associated with this study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型HVPS-4机载探测器飞行中捕获的云粒子图像的软对比表示学习
云的特性是精确的气候模式的基础,并且通常来自组成云的单个粒子。研究这些云粒子具有挑战性,因为它们的形状错综复杂,被称为“习惯”,而通过探测器生成的图像进行人工分类既耗时又主观。我们提出了一种新的习惯表示学习方法,该方法通过利用视觉变形器(ViTs)的自监督学习(SSL)来使用最小标记数据,该数据集由新型大容量沉淀光谱仪捕获的124000张图像组成。HVPS-4探针。我们的方法在293个样本带注释的数据集上显著优于ImageNet预训练48%。值得注意的是,我们提出了用于学习习惯表示的第一个SSL方案,利用从探针中收集的数据。我们的研究结果表明,即使使用单通道HVPS-4数据,自监督预训练也能显著提高习惯分类。我们使用连续视图和为连续飞行测量量身定制的软对比物镜实现了进一步的增益。我们的工作为将SSL应用于来自先进云粒子成像探测器的多视图和多尺度数据铺平了道路,从而能够全面表征飞行环境。我们公开发布与本研究相关的数据、代码和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dip-Guided Poststack Inversion via Structure-Tensor Regularization IEEE Geoscience and Remote Sensing Letters Institutional Listings IEEE Geoscience and Remote Sensing Letters information for authors Corrections to “Spire Near-Nadir GNSS-R for Sea Ice Detection: First Results” High-Frequency GPR Data Reconstruction With Conditional GAN and Contrastive Unpaired Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1