Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li
{"title":"A 15.4-ppm/°C GaN-Based Voltage Reference With Process-Variation-Immunity and High PSR for Electric Vehicle Power Systems","authors":"Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li","doi":"10.1109/LSSC.2024.3510597","DOIUrl":null,"url":null,"abstract":"The proposed gallium nitride (GaN)-based voltage reference (\n<inline-formula> <tex-math>$V_{\\mathrm { REF}}$ </tex-math></inline-formula>\n) generator has a low temperature coefficient (TC) of 15.4 ppm/°C, small \n<inline-formula> <tex-math>$V_{\\mathrm { REF}}$ </tex-math></inline-formula>\n deviation at different process corners (standard deviation of 0.22%), line sensitivity as low as 0.0023%/V, and high power supply rejection (PSR) of −187 and −114 dB at 100 Hz and 50 MHz, respectively. The proportional-to-absolute-temperature (PTAT) gate current for enhancement-mode GaN (eGaN) optimizes TC. Eliminating depletion-mode GaN (dGaN) gate leakage and using multiple stacked composite dGaNs can improve line regulation and PSR. All performance is achieved with a low power consumption of \n<inline-formula> <tex-math>$10.9~\\mu $ </tex-math></inline-formula>\nW.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"359-362"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772615/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed gallium nitride (GaN)-based voltage reference (
$V_{\mathrm { REF}}$
) generator has a low temperature coefficient (TC) of 15.4 ppm/°C, small
$V_{\mathrm { REF}}$
deviation at different process corners (standard deviation of 0.22%), line sensitivity as low as 0.0023%/V, and high power supply rejection (PSR) of −187 and −114 dB at 100 Hz and 50 MHz, respectively. The proportional-to-absolute-temperature (PTAT) gate current for enhancement-mode GaN (eGaN) optimizes TC. Eliminating depletion-mode GaN (dGaN) gate leakage and using multiple stacked composite dGaNs can improve line regulation and PSR. All performance is achieved with a low power consumption of
$10.9~\mu $
W.