Extracting Dispersion Spectrum Directly From the High-Speed Train-Induced Seismic Signal

Shengpei Xia;Xiaokai Wang;Wenchao Chen;Xinyue Pan;Jingrui Luo
{"title":"Extracting Dispersion Spectrum Directly From the High-Speed Train-Induced Seismic Signal","authors":"Shengpei Xia;Xiaokai Wang;Wenchao Chen;Xinyue Pan;Jingrui Luo","doi":"10.1109/LGRS.2024.3509134","DOIUrl":null,"url":null,"abstract":"The moving high-speed train (HST) generates strong vibrations in the railway roadbed, causing seismic waves to propagate through the subsurface medium. Consequently, moving HSTs can be considered as a novel seismic source for probing subsurface structures near high-speed railways (HSRs). An HST has several carriages, making it a typical combined moving source that induces a complex interference wavefield. Seismic interferometry (SI) is a commonly used method for generating virtual shot gathers based on background noise, and the phase-shifting method (PS) is commonly used to generate a dispersion spectrum based on the constructed virtual shot gathers. Therefore, SI and PS have been used for constructing virtual shot gathers and further generating the dispersion spectrum in HST-induced seismic signal processing. Although the HST-induced seismic wavefield exhibits complex interference features, it still maintains stable and strong amplitude characteristics. Therefore, we propose a method for directly extracting the dispersion spectrum from the HST-induced seismic signal through time-frequency decomposition and similarity-based velocity scanning. Compared to the commonly used procedure (SI + PS), the proposed method avoids the virtual shot gather construction procedure. The synthetic data example and real data example have shown the proposed method’s effectiveness.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10771833/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The moving high-speed train (HST) generates strong vibrations in the railway roadbed, causing seismic waves to propagate through the subsurface medium. Consequently, moving HSTs can be considered as a novel seismic source for probing subsurface structures near high-speed railways (HSRs). An HST has several carriages, making it a typical combined moving source that induces a complex interference wavefield. Seismic interferometry (SI) is a commonly used method for generating virtual shot gathers based on background noise, and the phase-shifting method (PS) is commonly used to generate a dispersion spectrum based on the constructed virtual shot gathers. Therefore, SI and PS have been used for constructing virtual shot gathers and further generating the dispersion spectrum in HST-induced seismic signal processing. Although the HST-induced seismic wavefield exhibits complex interference features, it still maintains stable and strong amplitude characteristics. Therefore, we propose a method for directly extracting the dispersion spectrum from the HST-induced seismic signal through time-frequency decomposition and similarity-based velocity scanning. Compared to the commonly used procedure (SI + PS), the proposed method avoids the virtual shot gather construction procedure. The synthetic data example and real data example have shown the proposed method’s effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deeper and Broader Multimodal Fusion: Cascaded Forest-of-Experts for Land Cover Classification Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024 Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1