The Impact of Service Demand Variability on Data Center Performance

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Parallel and Distributed Systems Pub Date : 2024-11-14 DOI:10.1109/TPDS.2024.3497792
Diletta Olliaro;Adityo Anggraito;Marco Ajmone Marsan;Simonetta Balsamo;Andrea Marin
{"title":"The Impact of Service Demand Variability on Data Center Performance","authors":"Diletta Olliaro;Adityo Anggraito;Marco Ajmone Marsan;Simonetta Balsamo;Andrea Marin","doi":"10.1109/TPDS.2024.3497792","DOIUrl":null,"url":null,"abstract":"Modern data centers feature an extensive array of cores that handle quite a diverse range of jobs. Recent traces, shared by leading cloud data center enterprises like Google and Alibaba, reveal that the constant increase in data center services and computational power is accompanied by a growing variability in service demand requirements. The number of cores needed for a job can vary widely, ranging from one to several thousands, and the number of seconds a core is held by a job can span more than five orders of magnitude. In this context of extreme variability, the policies governing the allocation of cores to jobs play a crucial role in the performance of data centers. It is widely acknowledged that the First-In First-Out (FIFO) policy tends to underutilize available computing capacity due to the varying magnitudes of core requests. However, the impact of the extreme variability in service demands on job waiting and response times, that has been deeply investigated in traditional queuing models, is not as well understood in the case of data centers, as we will show. To address this issue, we investigate the dynamics of a data center cluster through analytical models in simple cases, and discrete event simulations based on real data. Our findings emphasize the significant impact of service demand variability, both in terms of requested cores and service times, and allow us to provide insight for enhancing data center performance. In particular, we show how data center performance can be improved thanks to the control of the interplay between service and waiting times through the assignment of cores to jobs.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 2","pages":"120-132"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10753043/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern data centers feature an extensive array of cores that handle quite a diverse range of jobs. Recent traces, shared by leading cloud data center enterprises like Google and Alibaba, reveal that the constant increase in data center services and computational power is accompanied by a growing variability in service demand requirements. The number of cores needed for a job can vary widely, ranging from one to several thousands, and the number of seconds a core is held by a job can span more than five orders of magnitude. In this context of extreme variability, the policies governing the allocation of cores to jobs play a crucial role in the performance of data centers. It is widely acknowledged that the First-In First-Out (FIFO) policy tends to underutilize available computing capacity due to the varying magnitudes of core requests. However, the impact of the extreme variability in service demands on job waiting and response times, that has been deeply investigated in traditional queuing models, is not as well understood in the case of data centers, as we will show. To address this issue, we investigate the dynamics of a data center cluster through analytical models in simple cases, and discrete event simulations based on real data. Our findings emphasize the significant impact of service demand variability, both in terms of requested cores and service times, and allow us to provide insight for enhancing data center performance. In particular, we show how data center performance can be improved thanks to the control of the interplay between service and waiting times through the assignment of cores to jobs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
服务需求变化对数据中心性能的影响
现代数据中心具有广泛的核心阵列,可以处理各种各样的任务。b谷歌和阿里巴巴等领先的云数据中心企业最近分享的痕迹显示,随着数据中心服务和计算能力的不断增加,服务需求需求的变化也越来越大。一个作业所需的核数可以相差很大,从一个到几千个不等,一个作业占用一个核的秒数可以超过五个数量级。在这种极端可变性的环境中,管理向作业分配核心的策略在数据中心的性能中起着至关重要的作用。人们普遍认为,由于核心请求的大小不同,先进先出(FIFO)策略倾向于充分利用可用的计算能力。然而,服务需求的极端可变性对工作等待和响应时间的影响在传统排队模型中已经得到了深入的研究,但在数据中心的情况下却没有得到很好的理解,正如我们将展示的那样。为了解决这个问题,我们通过简单情况下的分析模型和基于真实数据的离散事件模拟来研究数据中心集群的动态。我们的研究结果强调了服务需求可变性的重大影响,包括所请求的核心和服务时间,并允许我们提供增强数据中心性能的见解。特别是,我们将展示如何通过将核心分配给作业来控制服务和等待时间之间的相互作用,从而提高数据中心的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
期刊最新文献
2024 Reviewers List* HpT: Hybrid Acceleration of Spatio-Temporal Attention Model Training on Heterogeneous Manycore Architectures Sparrow: Expediting Smart Contract Execution for Blockchain Sharding via Inter-Shard Caching CAT: Cellular Automata on Tensor Cores UMPIPE: Unequal Microbatches-Based Pipeline Parallelism for Deep Neural Network Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1