{"title":"Cost-Effective and Low-Latency Data Placement in Edge Environment Based on PageRank-Inspired Regional Value","authors":"Pengwei Wang;Junye Qiao;Yuying Zhao;Zhijun Ding","doi":"10.1109/TPDS.2024.3506625","DOIUrl":null,"url":null,"abstract":"Edge storage offers low-latency services to users. However, due to strained edge resources and high costs, enterprises must choose the data that most warrant placement at the edge and place it in the right location. In practice, data exhibit temporal and spatial properties, and variability, which have a significant impact on their placement, but have been largely ignored in research. To address this, we introduce the concept of data temperature, which considers data characteristics over time and space. To consider the influence of spatial relevance among different regions for placing data, inspired by PageRank, we present a model using data temperature to assess the regional value of data, which effectively leverages collaboration within the edge storage system. We also propose a regional value-based algorithm (RVA) that minimizes cost while meeting user response time requirements. By taking into account the correlation between regions, the RVA can achieve lower latency than current methods when creating an equal or even smaller number of replicas. Experimental results validate the efficacy of the proposed method in terms of latency, success rate, and cost efficiency.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 2","pages":"185-196"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767402/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Edge storage offers low-latency services to users. However, due to strained edge resources and high costs, enterprises must choose the data that most warrant placement at the edge and place it in the right location. In practice, data exhibit temporal and spatial properties, and variability, which have a significant impact on their placement, but have been largely ignored in research. To address this, we introduce the concept of data temperature, which considers data characteristics over time and space. To consider the influence of spatial relevance among different regions for placing data, inspired by PageRank, we present a model using data temperature to assess the regional value of data, which effectively leverages collaboration within the edge storage system. We also propose a regional value-based algorithm (RVA) that minimizes cost while meeting user response time requirements. By taking into account the correlation between regions, the RVA can achieve lower latency than current methods when creating an equal or even smaller number of replicas. Experimental results validate the efficacy of the proposed method in terms of latency, success rate, and cost efficiency.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.