{"title":"Development of coupled finite element model to investigate electromagnetic forming and simultaneous multi-point perforations of Aluminium tube","authors":"Avinash Chetry, Arup Nandy","doi":"10.1007/s12289-024-01871-7","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a coupled 3D numerical model to understand high-strain rate electromagnetic forming and multi-point perforation of Al6061-T6 tube. This study focuses on a comprehensive exploration of the process by numerically simulating the forming and perforation of Al6061-T6 tubes for two type of punches (concave and pointed) across different configurations (12-holes and 36 -holes), and for two specific hole positions (centrally located and end holes), implemented through LS-DYNA™ software. A detailed analysis of the temporal distributions of various critical process parameters i.e., Lorentz force distribution, velocity on deformation, stress, and strain distribution near the perforated hole has been carried out to elucidate the physics of EMFP. Furthermore, the study compares the numerical simulation with experimental data to evaluate the number of perforated holes and the average hole diameter across different punch configurations and discharge energy ranges. The numerical outcomes are in good agreement with experimental findings, with maximum variations not exceeding 6%. The study also reveals that the non-linearity associated with Lorentz force distributions is not only in circumferential direction but also in axial directions. Higher energy levels increase hole diameter, but for the given tube geometry, maximum 6.2 kJ can be applied without occurrence of crack and rebound. For the given tube thickness, 6.2 kJ discharge energy is optimum to produce clear perforation.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01871-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01871-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a coupled 3D numerical model to understand high-strain rate electromagnetic forming and multi-point perforation of Al6061-T6 tube. This study focuses on a comprehensive exploration of the process by numerically simulating the forming and perforation of Al6061-T6 tubes for two type of punches (concave and pointed) across different configurations (12-holes and 36 -holes), and for two specific hole positions (centrally located and end holes), implemented through LS-DYNA™ software. A detailed analysis of the temporal distributions of various critical process parameters i.e., Lorentz force distribution, velocity on deformation, stress, and strain distribution near the perforated hole has been carried out to elucidate the physics of EMFP. Furthermore, the study compares the numerical simulation with experimental data to evaluate the number of perforated holes and the average hole diameter across different punch configurations and discharge energy ranges. The numerical outcomes are in good agreement with experimental findings, with maximum variations not exceeding 6%. The study also reveals that the non-linearity associated with Lorentz force distributions is not only in circumferential direction but also in axial directions. Higher energy levels increase hole diameter, but for the given tube geometry, maximum 6.2 kJ can be applied without occurrence of crack and rebound. For the given tube thickness, 6.2 kJ discharge energy is optimum to produce clear perforation.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.