Melt/rock ratios and melt fluxes during reactive percolation: from matrix- to melt-controlled dynamics

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2024-12-12 DOI:10.1007/s00410-024-02194-1
Valentin Basch, Marguerite Godard, Andrea Tommasi, Elisabetta Rampone
{"title":"Melt/rock ratios and melt fluxes during reactive percolation: from matrix- to melt-controlled dynamics","authors":"Valentin Basch,&nbsp;Marguerite Godard,&nbsp;Andrea Tommasi,&nbsp;Elisabetta Rampone","doi":"10.1007/s00410-024-02194-1","DOIUrl":null,"url":null,"abstract":"<div><p>Deep melt migration processes occurring beneath spreading ridges largely occur by porous flow and involve reaction with the pre-existing crystal matrix. The control of the melt/rock ratios and melt fluxes involved in these reactive percolation processes on the structural and chemical evolution of oceanic magmatic systems is yet to be fully constrained. We here report a combined petro-geochemical study of variably evolved gabbroic layers in the Oman Moho Transition Zone, atop the Maqsad mantle diapir, ranging from dunites, troctolites and wehrlites to olivine gabbros. The layering characterizing the base of the crustal section formed during a process of reactive porous flow and hybridization of a dunitic precursor. Positive feedback between melt distribution and deformation focusing allowed for the development of two distinct percolation behaviours, between focused melt percolation and diffuse melt impregnation. This geological setting provides an ideal case study to assess the impact of the melt/rock ratios and percolation dynamics on the evolution of textures and chemical compositions during focused and diffuse percolation. Namely, the former leads to a modification of the crystallographic preferred orientation and complete chemical reequilibration of the matrix, while the latter allowed for preservation of the pre-existing structure and buffer of the melt composition by the matrix and reactive processes. We quantify the melt/rock ratios associated with the two magmatic systems using <i>Plate Models</i> to demonstrate that focused percolation easily resets the matrix composition from melt/rock ratios integrated over time ~ 2–3, whereas diffuse, low-flux melt impregnation would require elevated melt/rock ratios (&gt; 20) to allow for chemical reequilibration. Furthermore, we provide a global overview of the evolution of mineral compositions and textures of a percolated olivine-rich protolith as a function of the melt migration style and the involved melt/rock ratios, both instantaneous and integrated over time.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02194-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep melt migration processes occurring beneath spreading ridges largely occur by porous flow and involve reaction with the pre-existing crystal matrix. The control of the melt/rock ratios and melt fluxes involved in these reactive percolation processes on the structural and chemical evolution of oceanic magmatic systems is yet to be fully constrained. We here report a combined petro-geochemical study of variably evolved gabbroic layers in the Oman Moho Transition Zone, atop the Maqsad mantle diapir, ranging from dunites, troctolites and wehrlites to olivine gabbros. The layering characterizing the base of the crustal section formed during a process of reactive porous flow and hybridization of a dunitic precursor. Positive feedback between melt distribution and deformation focusing allowed for the development of two distinct percolation behaviours, between focused melt percolation and diffuse melt impregnation. This geological setting provides an ideal case study to assess the impact of the melt/rock ratios and percolation dynamics on the evolution of textures and chemical compositions during focused and diffuse percolation. Namely, the former leads to a modification of the crystallographic preferred orientation and complete chemical reequilibration of the matrix, while the latter allowed for preservation of the pre-existing structure and buffer of the melt composition by the matrix and reactive processes. We quantify the melt/rock ratios associated with the two magmatic systems using Plate Models to demonstrate that focused percolation easily resets the matrix composition from melt/rock ratios integrated over time ~ 2–3, whereas diffuse, low-flux melt impregnation would require elevated melt/rock ratios (> 20) to allow for chemical reequilibration. Furthermore, we provide a global overview of the evolution of mineral compositions and textures of a percolated olivine-rich protolith as a function of the melt migration style and the involved melt/rock ratios, both instantaneous and integrated over time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Quantifying the partial melting of Himalayan Metamorphic core in Eastern Himalaya: implications for crustal rheology Early Permian post-collisional magmatism induced by extensive removal of the Variscan lithospheric mantle Water solubility of olivine under redox-controlled deep upper mantle conditions: effects of pressure, temperature and coexisting fluids and implications Reconstructing mantle–crust boundary magmatism through Cimmerian orogenic events: evidence from deep crustal cumulates in northeastern Pamir Monazite petrochronology dates Jurassic and Cretaceous cycles of prograde and retrograde metamorphism in the Funeral Mountains, California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1