An intelligent surface roughness prediction method based on automatic feature extraction and adaptive data fusion

Xun Zhang, Sibao Wang, Fangrui Gao, Hao Wang, Haoyu Wu, Ying Liu
{"title":"An intelligent surface roughness prediction method based on automatic feature extraction and adaptive data fusion","authors":"Xun Zhang,&nbsp;Sibao Wang,&nbsp;Fangrui Gao,&nbsp;Hao Wang,&nbsp;Haoyu Wu,&nbsp;Ying Liu","doi":"10.1007/s43684-024-00083-9","DOIUrl":null,"url":null,"abstract":"<div><p>Machining quality prediction based on cutting big data is the core focus of current developments in intelligent manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses. Process-based predictions are generally constrained to the development of rudimentary regression models. Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction, principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly, by processing signals from multiple directions, time-frequency domain images with rich features can be obtained, which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can automatically identify sensitive data features through neural network fitting experiments and optimization, thereby eliminating the need for expert experience in determining the significance of data features. Based on this approach, the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models. Furthermore, this method enhances the intelligent machining level.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00083-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00083-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machining quality prediction based on cutting big data is the core focus of current developments in intelligent manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses. Process-based predictions are generally constrained to the development of rudimentary regression models. Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction, principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly, by processing signals from multiple directions, time-frequency domain images with rich features can be obtained, which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can automatically identify sensitive data features through neural network fitting experiments and optimization, thereby eliminating the need for expert experience in determining the significance of data features. Based on this approach, the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models. Furthermore, this method enhances the intelligent machining level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
An intelligent surface roughness prediction method based on automatic feature extraction and adaptive data fusion Safe motion planning and formation control of quadruped robots Point clouds to as-built two-node wireframe digital twin: a novel method to support autonomous robotic inspection Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1