Discovery and Characterization of Unusual O-Linked Glycosylation of IgG4 Antibody Using LC-MS

IF 1.8 3区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Rapid Communications in Mass Spectrometry Pub Date : 2024-12-11 DOI:10.1002/rcm.9969
Dariusz J. Janecki, Chi-Ya Kao-Scharf, Andreas Hoffmann
{"title":"Discovery and Characterization of Unusual O-Linked Glycosylation of IgG4 Antibody Using LC-MS","authors":"Dariusz J. Janecki,&nbsp;Chi-Ya Kao-Scharf,&nbsp;Andreas Hoffmann","doi":"10.1002/rcm.9969","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Consensus is that immunoglobulin IgG4 contains only N-linked glycosylation. The analysis of several batches of commercial biopharmaceutical product Dupixent using top-down intact mass spectrometry revealed that this IgG4 features a small amount of O-linked glycosylation in the Fab region. This is the first report of an O-linked glycosylation in an IgG4 antibody.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Monoclonal antibody solutions were subjected to cation exchange (CEX) and reverse phase (RP) chromatography and/or additional preconcentration/fractionation methods to prepare samples for subsequent analysis. Advanced MS analysis and fragmentation techniques (HCD, ETD, and EThcD) were employed to localize the O-linked glycosylation as well as elucidate the structure of the glycan(s).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>O-linked glycosylation in the IgG4 dupilumab was discovered by intact-MS. The probable location was narrowed down to four sites in the CH1 domain, and the structure of the O-linked glycan was determined to be of Core 1 type. The relative quantities of the modifications were low, but the glycosylation was consistently detected in several batches of Dupixent.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We discovered a rare glycosylation modification on dupilumab, an IgG4 antibody. The O-linked glycosylation was characterized and localized in the Fab region.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9969","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Consensus is that immunoglobulin IgG4 contains only N-linked glycosylation. The analysis of several batches of commercial biopharmaceutical product Dupixent using top-down intact mass spectrometry revealed that this IgG4 features a small amount of O-linked glycosylation in the Fab region. This is the first report of an O-linked glycosylation in an IgG4 antibody.

Methods

Monoclonal antibody solutions were subjected to cation exchange (CEX) and reverse phase (RP) chromatography and/or additional preconcentration/fractionation methods to prepare samples for subsequent analysis. Advanced MS analysis and fragmentation techniques (HCD, ETD, and EThcD) were employed to localize the O-linked glycosylation as well as elucidate the structure of the glycan(s).

Results

O-linked glycosylation in the IgG4 dupilumab was discovered by intact-MS. The probable location was narrowed down to four sites in the CH1 domain, and the structure of the O-linked glycan was determined to be of Core 1 type. The relative quantities of the modifications were low, but the glycosylation was consistently detected in several batches of Dupixent.

Conclusions

We discovered a rare glycosylation modification on dupilumab, an IgG4 antibody. The O-linked glycosylation was characterized and localized in the Fab region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
219
审稿时长
2.6 months
期刊介绍: Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.
期刊最新文献
Development of a Matrix-Assisted Laser Desorption Ionization High Resolution Mass Spectrometry Method for the Quantification of Camalexin and Scopoletin in Arabidopsis thaliana Establishment of a Mass Spectrometric Fingerprint of the Most Common Phytocannabinoids in Electrospray Ionization in Positive Ion Mode Colicin Immunity Proteins of Pathogenic Bacteria Detected by Antibiotic-Induced SOS Response, Plasmid Sequencing, MALDI-TOF-TOF Mass Spectrometry, and Top-Down Proteomic Analysis Discovery and Characterization of Unusual O-Linked Glycosylation of IgG4 Antibody Using LC-MS Integrative multi-omics reveals the mechanism of ulcerative colitis treated with Ma-Mu-Ran antidiarrheal capsules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1