The multi-scale dissipation mechanism of composite solid electrolyte based on nanofiber elastomer for all-solid-state lithium metal batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-07 DOI:10.1016/j.jcis.2024.12.042
Wen Yu, Hengying Xiang, Jianing Yue, Xiaofan Feng, Wenwen Duan, Yang Feng, Bowen Cheng, Nanping Deng, Weimin Kang
{"title":"The multi-scale dissipation mechanism of composite solid electrolyte based on nanofiber elastomer for all-solid-state lithium metal batteries.","authors":"Wen Yu, Hengying Xiang, Jianing Yue, Xiaofan Feng, Wenwen Duan, Yang Feng, Bowen Cheng, Nanping Deng, Weimin Kang","doi":"10.1016/j.jcis.2024.12.042","DOIUrl":null,"url":null,"abstract":"<p><p>Developing next generation batteries necessitates a paradigm shift in the way to engineering solutions for materials challenges. In comparison to traditional organic liquid batteries, all-solid-state batteries exhibit some significant advantages such as high safety and energy density, yet solid electrolytes face challenges in responding dimensional changes of electrodes driven by mass transport. Herein, the critical mechanical parameters affecting battery cycling duration are evaluated based on Spearman rank correlation coefficient, decoupling them into strength, ductility, stiffness, toughness, elasticity, etc. Inspired by the statistical results to apply the materials with stress-relief mechanisms, we propose an elastic solid electrolyte based on the multi-scale mechanical dissipation mechanism. The Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>/thermoplastic polyurethanes curled fibrous framework is designed and prepared by side-by-side electrospinning technique, serving as elastic source and ion-transport pathways for the composite with poly(ethylene oxide) matrix. Dominated sequentially by electrolyte deformation, network orientation, extendable fibers and molecular chain unfolding, the prepared elastic electrolyte exhibits excellent resilience, compression and puncture resistance. Meanwhile, the curled fast ion conductor fibers can also provide the transport pathways along the component of transmembrane direction, endowing the composite electrolyte with an ionic conductivity of 1.46 × 10<sup>-4</sup> S cm<sup>-1</sup> at 30 °C. A low capacity decay of 0.011 % per cycle at 2 C in assembled LiFePO<sub>4</sub>/Li battery and an excellent lifespan of 1000 cycles at 50 °C in LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>/Li battery can be achieved. The elastic electrolyte system presents a promising strategy for enabling stable operation of high-energy all-solid-state lithium batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1073-1084"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing next generation batteries necessitates a paradigm shift in the way to engineering solutions for materials challenges. In comparison to traditional organic liquid batteries, all-solid-state batteries exhibit some significant advantages such as high safety and energy density, yet solid electrolytes face challenges in responding dimensional changes of electrodes driven by mass transport. Herein, the critical mechanical parameters affecting battery cycling duration are evaluated based on Spearman rank correlation coefficient, decoupling them into strength, ductility, stiffness, toughness, elasticity, etc. Inspired by the statistical results to apply the materials with stress-relief mechanisms, we propose an elastic solid electrolyte based on the multi-scale mechanical dissipation mechanism. The Li6.4La3Zr1.4Ta0.6O12/thermoplastic polyurethanes curled fibrous framework is designed and prepared by side-by-side electrospinning technique, serving as elastic source and ion-transport pathways for the composite with poly(ethylene oxide) matrix. Dominated sequentially by electrolyte deformation, network orientation, extendable fibers and molecular chain unfolding, the prepared elastic electrolyte exhibits excellent resilience, compression and puncture resistance. Meanwhile, the curled fast ion conductor fibers can also provide the transport pathways along the component of transmembrane direction, endowing the composite electrolyte with an ionic conductivity of 1.46 × 10-4 S cm-1 at 30 °C. A low capacity decay of 0.011 % per cycle at 2 C in assembled LiFePO4/Li battery and an excellent lifespan of 1000 cycles at 50 °C in LiNi0.8Mn0.1Co0.1O2/Li battery can be achieved. The elastic electrolyte system presents a promising strategy for enabling stable operation of high-energy all-solid-state lithium batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米纤维弹性体的全固态锂金属电池复合固体电解质的多尺度耗散机制。
开发下一代电池需要在材料挑战的工程解决方案上进行范式转变。与传统的有机液体电池相比,全固态电池具有较高的安全性和能量密度等显著优势,但固体电解质在响应质量输运驱动的电极尺寸变化方面面临挑战。本文基于Spearman秩相关系数对影响电池循环寿命的关键力学参数进行了评估,将其解耦为强度、延性、刚度、韧性、弹性等参数。受统计结果的启发,我们提出了一种基于多尺度力学耗散机制的弹性固体电解质。采用静电纺丝技术设计并制备了Li6.4La3Zr1.4Ta0.6O12/热塑性聚氨酯卷曲纤维框架,作为聚环氧乙烷基复合材料的弹性源和离子传递途径。在电解液变形、网状取向、可伸展纤维和分子链展开的先后主导下,制备的弹性电解液表现出优异的回弹性、抗压缩性和抗穿刺性。同时,卷曲的快速离子导体纤维还可以提供沿跨膜方向组分的传输途径,使复合电解质在30℃时具有1.46 × 10-4 S cm-1的离子电导率。在2℃下,组装的LiFePO4/Li电池每循环容量衰减0.011%,在50℃下,LiNi0.8Mn0.1Co0.1O2/Li电池可以实现1000次循环的优异寿命。弹性电解质体系为实现高能全固态锂电池的稳定运行提供了一种很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Poly(ethylene oxide) (PEO)
阿拉丁
lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI)
阿拉丁
acetonitrile (ACN)
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions. High-entropy NASICON-Type Li1.3Al0.4Ti0.5Zr0.5Sn0.5Ta0.1(PO4)3 with high electrochemical stability for lithium-ion batteries. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1