Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere

IF 2.7 2区 地球科学 Q2 BIOLOGY Geobiology Pub Date : 2024-12-12 DOI:10.1111/gbi.70005
Sadia S. Tamanna, Joanne S. Boden, Kimberly M. Kaiser, Nicola Wannicke, Jonas Höring, Patricia Sánchez-Baracaldo, Marcel Deponte, Nicole Frankenberg-Dinkel, Michelle M. Gehringer
{"title":"Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere","authors":"Sadia S. Tamanna,&nbsp;Joanne S. Boden,&nbsp;Kimberly M. Kaiser,&nbsp;Nicola Wannicke,&nbsp;Jonas Höring,&nbsp;Patricia Sánchez-Baracaldo,&nbsp;Marcel Deponte,&nbsp;Nicole Frankenberg-Dinkel,&nbsp;Michelle M. Gehringer","doi":"10.1111/gbi.70005","DOIUrl":null,"url":null,"abstract":"<p>The evolution of oxygenic photosynthesis during the Archean (4–2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O<sub>2</sub>, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, <i>Pseudanabaena</i> sp. PCC7367, previously demonstrated to release significantly more O<sub>2</sub> under anoxic conditions. The observed significantly higher growth rates (<i>p</i> &lt; 0.001) and protein and glycogen contents (<i>p</i> &lt; 0.05) in anoxically cultured <i>Pseudanabaena</i> PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of <i>Pseudanabaena</i> sp. PCC7367 correlated to atmospheric <i>p</i>O<sub>2</sub> and cellular SOD activity? Expression of <i>sodB</i> (encoding FeSOD) and <i>sodC</i> (encoding CuZnSOD) strongly correlated with medium O<sub>2</sub> levels (<i>p</i> &lt; 0.001). Expression of <i>sodA</i> (encoding MnSOD) correlated significantly to SOD activity during the day (<i>p</i> = 0.019) when medium O<sub>2</sub> concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (<i>p</i> &lt; 0.001) 2 h before the onset of the dark phase compared to O<sub>2</sub>-rich growth conditions. The expression of SOD encoding genes was significantly reduced (<i>p</i> &lt; 0.05) under anoxic conditions in stirred cultures, as were medium O<sub>2</sub> levels (<i>p</i> ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing <i>p</i>O<sub>2</sub> negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70005","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of oxygenic photosynthesis during the Archean (4–2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O2, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, Pseudanabaena sp. PCC7367, previously demonstrated to release significantly more O2 under anoxic conditions. The observed significantly higher growth rates (p < 0.001) and protein and glycogen contents (p < 0.05) in anoxically cultured Pseudanabaena PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of Pseudanabaena sp. PCC7367 correlated to atmospheric pO2 and cellular SOD activity? Expression of sodB (encoding FeSOD) and sodC (encoding CuZnSOD) strongly correlated with medium O2 levels (p < 0.001). Expression of sodA (encoding MnSOD) correlated significantly to SOD activity during the day (p = 0.019) when medium O2 concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (p < 0.001) 2 h before the onset of the dark phase compared to O2-rich growth conditions. The expression of SOD encoding genes was significantly reduced (p < 0.05) under anoxic conditions in stirred cultures, as were medium O2 levels (p ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing pO2 negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
期刊最新文献
Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil The Impact of Early Diagenesis on Biosignature Preservation in Sulfate Evaporites: Insights From Messinian (Late Miocene) Gypsum Living in Their Heyday: Iron-Oxidizing Bacteria Bloomed in Shallow-Marine, Subtidal Environments at ca. 1.88 Ga The Effects of Plant–Microbe–Environment Interactions on Mineral Weathering Patterns in a Granular Basalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1