The C5a/C5aR1 axis promotes migration of tolerogenic dendritic cells to lymph nodes, impairing the anticancer immune response.

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2024-12-12 DOI:10.1158/2326-6066.CIR-24-0250
Yaiza Senent, Ana Remírez, David Repáraz, Diana Llopiz, Daiana P Celias, Cristina Sainz, Rodrigo Entrialgo-Cadierno, Lucia Suarez, Ana Rouzaut, Diego Alignani, Beatriz Tavira, John D Lambris, Trent M Woodruff, Carlos E de Andrea, Brian Ruffell, Pablo Sarobe, Daniel Ajona, Ruben Pio
{"title":"The C5a/C5aR1 axis promotes migration of tolerogenic dendritic cells to lymph nodes, impairing the anticancer immune response.","authors":"Yaiza Senent, Ana Remírez, David Repáraz, Diana Llopiz, Daiana P Celias, Cristina Sainz, Rodrigo Entrialgo-Cadierno, Lucia Suarez, Ana Rouzaut, Diego Alignani, Beatriz Tavira, John D Lambris, Trent M Woodruff, Carlos E de Andrea, Brian Ruffell, Pablo Sarobe, Daniel Ajona, Ruben Pio","doi":"10.1158/2326-6066.CIR-24-0250","DOIUrl":null,"url":null,"abstract":"<p><p>The precise mechanisms by which the complement system contributes to the establishment of an immunosuppressive tumor microenvironment (TME) and promotes tumor progression remain unclear. In this study, we investigated the expression and function of complement C5a receptor 1 (C5aR1) in human and mouse cancer-associated dendritic cells (DCs). First, we observed an overexpression of C5aR1 in tumor-infiltrating DCs, compared to DCs from blood or spleen. C5aR1 expression was restricted to type 2 conventional DCs (cDC2) and monocyte-derived DCs (moDCs), which displayed a tolerogenic phenotype capable of inhibiting T-cell activation and promoting tumor growth. C5aR1 engagement in DCs drove their migration from tumors to tumor-draining lymph nodes, where C5a levels were higher. We used this knowledge to optimize an anticancer therapy aimed at enhancing DC activity. In three syngeneic tumor models, C5aR1 inhibition significantly enhanced the efficacy of poly I:C, a Toll-like receptor 3 (TLR3) agonist, in combination with PD-1/PD-L1 blockade. The contribution of C5aR1 inhibition to the antitumor activity of the combination treatment relied on type 1 conventional DCs (cDC1s) and antigen-specific CD8+ T cells, required lymphocyte egress from secondary lymphoid organs, and was associated with an increase in interferon gamma (IFNγ) signaling. In conclusion, our study highlights the importance of the C5a/C5aR1 axis in the biology of cancer-associated DCs and provides compelling evidence for the therapeutic potential of modulating the complement system to enhance DC-mediated immune responses against tumors.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0250","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The precise mechanisms by which the complement system contributes to the establishment of an immunosuppressive tumor microenvironment (TME) and promotes tumor progression remain unclear. In this study, we investigated the expression and function of complement C5a receptor 1 (C5aR1) in human and mouse cancer-associated dendritic cells (DCs). First, we observed an overexpression of C5aR1 in tumor-infiltrating DCs, compared to DCs from blood or spleen. C5aR1 expression was restricted to type 2 conventional DCs (cDC2) and monocyte-derived DCs (moDCs), which displayed a tolerogenic phenotype capable of inhibiting T-cell activation and promoting tumor growth. C5aR1 engagement in DCs drove their migration from tumors to tumor-draining lymph nodes, where C5a levels were higher. We used this knowledge to optimize an anticancer therapy aimed at enhancing DC activity. In three syngeneic tumor models, C5aR1 inhibition significantly enhanced the efficacy of poly I:C, a Toll-like receptor 3 (TLR3) agonist, in combination with PD-1/PD-L1 blockade. The contribution of C5aR1 inhibition to the antitumor activity of the combination treatment relied on type 1 conventional DCs (cDC1s) and antigen-specific CD8+ T cells, required lymphocyte egress from secondary lymphoid organs, and was associated with an increase in interferon gamma (IFNγ) signaling. In conclusion, our study highlights the importance of the C5a/C5aR1 axis in the biology of cancer-associated DCs and provides compelling evidence for the therapeutic potential of modulating the complement system to enhance DC-mediated immune responses against tumors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C5a/C5aR1轴促进耐受性树突状细胞向淋巴结的迁移,损害抗癌免疫反应。
补体系统有助于建立免疫抑制肿瘤微环境(TME)并促进肿瘤进展的确切机制尚不清楚。在这项研究中,我们研究了补体C5a受体1 (C5aR1)在人和小鼠癌症相关树突状细胞(dc)中的表达和功能。首先,与血液或脾脏的dc相比,我们观察到C5aR1在肿瘤浸润性dc中的过表达。C5aR1的表达仅限于2型常规dc (cDC2)和单核细胞来源dc (moDCs),它们表现出能够抑制t细胞激活和促进肿瘤生长的耐受性表型。dc中C5aR1的参与促使它们从肿瘤向肿瘤引流淋巴结迁移,在那里C5a水平更高。我们利用这些知识来优化一种旨在增强DC活性的抗癌疗法。在三种同基因肿瘤模型中,C5aR1抑制显著增强poly I:C (toll样受体3 (TLR3)激动剂)联合PD-1/PD-L1阻断的疗效。C5aR1抑制对联合治疗的抗肿瘤活性的贡献依赖于1型常规dc (cDC1s)和抗原特异性CD8+ T细胞,需要淋巴细胞从次级淋巴器官输出,并与干扰素γ (IFNγ)信号传导的增加有关。总之,我们的研究强调了C5a/C5aR1轴在癌症相关dc生物学中的重要性,并为调节补体系统以增强dc介导的肿瘤免疫应答的治疗潜力提供了令人信服的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
T Cells Instruct Immune Checkpoint Inhibitor Therapy Resistance in Tumors Responsive to IL1 and TNFα Inflammation. Combination CXCR4 and PD-1 Blockade Enhances Intratumoral Dendritic Cell Activation and Immune Responses Against Hepatocellular Carcinoma. Inflammatory Stress Determines the Need for Chemotherapy in Patients with HER2-Positive Esophagogastric Adenocarcinoma Receiving Targeted Therapy and Immunotherapy. Targeting of Tumoral NAC1 Mitigates Myeloid-Derived Suppressor Cell-Mediated Immunosuppression and Potentiates Anti-PD-1 Therapy in Ovarian Cancer. A PSMA-Targeted Tri-Specific Killer Engager Enhances NK Cell Cytotoxicity against Prostate Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1