Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY BioEssays Pub Date : 2024-12-11 DOI:10.1002/bies.202300197
Ceniz Zihni
{"title":"Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics","authors":"Ceniz Zihni","doi":"10.1002/bies.202300197","DOIUrl":null,"url":null,"abstract":"<p>The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a “nibbling” action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an “integrin adhesome-like” network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202300197","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bies.202300197","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a “nibbling” action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an “integrin adhesome-like” network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视网膜色素上皮的吞噬作用:极化细胞力学的新见解。
视网膜色素上皮(RPE)是眼后部的一种特殊上皮,对视觉健康具有多种必要的功能。最近的研究提高了我们对RPE主要功能之一的分子理解;残光感受器外段(POS)的吞噬作用。值得注意的是,与细胞外POS结合的根尖整合素与细胞内肌动球蛋白细胞骨架之间形成了一种机械联系,可以驱动POS的内化。这一过程可能包括“啃咬”动作,作为切断外段尖端的第一步。这些见解使我们假设一个“整合素黏附体样”网络,非典型地组装在根尖膜RPE-POS接触处。我提出这个假设的网络协调了粒子内化所需的复杂膜重塑事件。因此,对其进行分析和表征可能会使我们对控制POS吞噬的分子机制有更全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioEssays
BioEssays 生物-生化与分子生物学
CiteScore
7.30
自引率
2.50%
发文量
167
审稿时长
4-8 weeks
期刊介绍: molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.
期刊最新文献
Ancient asexuality: No scandals found with novel data. Unleashing viral mimicry: A combinatorial strategy to enhance the efficacy of PARP7 inhibitors. Cell-cell fusion: To lose one life and begin another. Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities. Macronutrient interactions and models of obesity: Insights from nutritional geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1