Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2024-12-11 DOI:10.1038/s44319-024-00333-0
Yuhao Shi, Amber McKenery, Melissa Dolan, Michalis Mastri, James W Hill, Adam Dommer, Sebastien Benzekry, Mark Long, Scott I Abrams, Igor Puzanov, John M L Ebos
{"title":"Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors.","authors":"Yuhao Shi, Amber McKenery, Melissa Dolan, Michalis Mastri, James W Hill, Adam Dommer, Sebastien Benzekry, Mark Long, Scott I Abrams, Igor Puzanov, John M L Ebos","doi":"10.1038/s44319-024-00333-0","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00333-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对PD-L1抑制的获得性抵抗增强了肿瘤中I型ifn调节的分泌程序。
程序性细胞死亡配体(PD-L1)的治疗性抑制与干扰素(IFN)信号传导的改变有关。由于ifn调节的细胞内信号可以控制肿瘤的细胞外分泌程序来调节免疫,我们研究了PD-L1抑制抵抗后肿瘤细胞中ifn相关的分泌变化。在这里,我们报告了一种抗pd - l1治疗诱导的分泌组(PTIS)在获得性耐药的肿瘤模型中由I型ifn调节。这些分泌变化可以抑制体外T细胞的激活,同时降低肿瘤细胞的细胞毒性,表明肿瘤的内在治疗适应可以发挥广泛的肿瘤外源性作用。当在体内重新植入时,当PTIS成分被单独破坏或I型IFN信号机制被阻断时,耐药肿瘤的生长可以减慢或停止。有趣的是,PD-L1在体外的遗传和治疗破坏只能部分概括PTIS表型,这突出了开发基于体内的耐药模型以更忠实地模拟临床相关治疗失败的重要性。总之,这项研究表明获得性抵抗免疫检查点抑制剂“重新连接”由I型ifn控制的肿瘤分泌程序,反过来,可以保护免受免疫细胞的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice. Rapid human oogonia-like cell specification via transcription factor-directed differentiation. High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors. The controls that got out of control : How failed control experiments paved the way to transformative discoveries. Male sex determination maintains proteostasis and extends lifespan of daf-18/PTEN deficient C. elegans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1