{"title":"Gas sensing performance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene heterojunction structures in greenhouse environments: a mini review.","authors":"Haoming Zhang, Hongyu Xu, Wen Zeng, Zhongchang Wang, Qu Zhou","doi":"10.3389/fchem.2024.1509732","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous advancement of smart greenhouse technologies, digital and information-based environmental monitoring has emerged as a focal point of research. The development of high-performance gas sensors is central to achieving this objective. In recent years, MXene materials have been widely applied in the field of gas sensors due to their excellent ion mobility, favorable hydrophilicity, outstanding electronic conductivity, and unique physicochemical properties. Various MXene heterojunction structures have been synthesized for gas detection. This review aims to summarize the current state of research on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-based gas sensors, explore methods for synthesizing different morphologies of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterojunction structures, and evaluate the sensing behaviors of these configurations to fully harness their potential for gas monitoring in greenhouse environments. Additionally, an in-depth analysis of the sensing mechanisms associated with Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterojunction structures will be provided, offering theoretical support for future investigations. The findings indicate that Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-based nanomaterials demonstrate considerable promise as high-performance sensors for gas detection in greenhouse settings. This innovative research not only provides new insights into the development of gas sensor technologies but also serves as an important foundation for the digitization of environmental monitoring.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1509732"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1509732","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous advancement of smart greenhouse technologies, digital and information-based environmental monitoring has emerged as a focal point of research. The development of high-performance gas sensors is central to achieving this objective. In recent years, MXene materials have been widely applied in the field of gas sensors due to their excellent ion mobility, favorable hydrophilicity, outstanding electronic conductivity, and unique physicochemical properties. Various MXene heterojunction structures have been synthesized for gas detection. This review aims to summarize the current state of research on Ti3C2Tx-based gas sensors, explore methods for synthesizing different morphologies of Ti3C2Tx heterojunction structures, and evaluate the sensing behaviors of these configurations to fully harness their potential for gas monitoring in greenhouse environments. Additionally, an in-depth analysis of the sensing mechanisms associated with Ti3C2Tx heterojunction structures will be provided, offering theoretical support for future investigations. The findings indicate that Ti3C2Tx-based nanomaterials demonstrate considerable promise as high-performance sensors for gas detection in greenhouse settings. This innovative research not only provides new insights into the development of gas sensor technologies but also serves as an important foundation for the digitization of environmental monitoring.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.