Molecular Basis of Eusocial Complexity: The Case of Worker Reproductivity in Bees.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2024-12-04 DOI:10.1093/gbe/evae269
David C Prince, Anders Wirén, Timothy J Huggins, David H Collins, Tamas Dalmay, Andrew F G Bourke
{"title":"Molecular Basis of Eusocial Complexity: The Case of Worker Reproductivity in Bees.","authors":"David C Prince, Anders Wirén, Timothy J Huggins, David H Collins, Tamas Dalmay, Andrew F G Bourke","doi":"10.1093/gbe/evae269","DOIUrl":null,"url":null,"abstract":"<p><p>In eusocial insects, the molecular basis of worker reproductivity, including how it changes with eusocial complexity, remains relatively poorly understood. To address this, we used mRNA-seq to isolate genes differentially expressed between ovary-active and ovary-inactive workers in the intermediately eusocial bumblebee Bombus terrestris. By comparisons with data from the advanced eusocial honeybee Apis mellifera, which shows reduced worker reproductivity, we characterized gene expression differences associated with change in worker reproductivity as a function of eusocial complexity. By comparisons with genes associated with queen-worker caste development in B. terrestris larvae, we tested the behavioral-morphological caste homology hypothesis, which proposes co-option of genes influencing reproductive division of labor in adults in morphological caste evolution. We conducted comparisons having isolated genes expressed in B. terrestris worker-laid eggs to remove the potential confound caused by gene expression in eggs. Gene expression differences between the B. terrestris worker phenotypes were mainly in fat body and ovary, not brain. Many genes (86%) more highly expressed in ovary of ovary-active workers were also expressed in worker-laid eggs, confirming egg-expressed genes were potentially confounding. Comparisons across B. terrestris and A. mellifera, and with B. terrestris larvae, returned significant percentage overlaps in differentially expressed genes and/or enriched Gene Ontology terms, suggesting conserved gene functions underpin worker reproductivity as it declines with increasing eusocial complexity and providing support for the behavioral-morphological caste homology hypothesis. Therefore, within bees, both a degree of conserved gene use and gene co-option appear to underlie the molecular basis of worker reproductivity and morphological caste evolution.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae269","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In eusocial insects, the molecular basis of worker reproductivity, including how it changes with eusocial complexity, remains relatively poorly understood. To address this, we used mRNA-seq to isolate genes differentially expressed between ovary-active and ovary-inactive workers in the intermediately eusocial bumblebee Bombus terrestris. By comparisons with data from the advanced eusocial honeybee Apis mellifera, which shows reduced worker reproductivity, we characterized gene expression differences associated with change in worker reproductivity as a function of eusocial complexity. By comparisons with genes associated with queen-worker caste development in B. terrestris larvae, we tested the behavioral-morphological caste homology hypothesis, which proposes co-option of genes influencing reproductive division of labor in adults in morphological caste evolution. We conducted comparisons having isolated genes expressed in B. terrestris worker-laid eggs to remove the potential confound caused by gene expression in eggs. Gene expression differences between the B. terrestris worker phenotypes were mainly in fat body and ovary, not brain. Many genes (86%) more highly expressed in ovary of ovary-active workers were also expressed in worker-laid eggs, confirming egg-expressed genes were potentially confounding. Comparisons across B. terrestris and A. mellifera, and with B. terrestris larvae, returned significant percentage overlaps in differentially expressed genes and/or enriched Gene Ontology terms, suggesting conserved gene functions underpin worker reproductivity as it declines with increasing eusocial complexity and providing support for the behavioral-morphological caste homology hypothesis. Therefore, within bees, both a degree of conserved gene use and gene co-option appear to underlie the molecular basis of worker reproductivity and morphological caste evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会复杂性的分子基础:蜜蜂工蜂繁殖的案例。
在真社会性昆虫中,工蜂生殖能力的分子基础,包括它如何随着真社会性复杂性而变化,仍然相对知之甚少。为了解决这个问题,我们使用mRNA-seq分离了中间群居大黄蜂(Bombus terrestris)中卵巢活跃和卵巢不活跃工蜂之间差异表达的基因。通过与显示工蜂繁殖能力降低的高级真社会性蜜蜂Apis mellifera的数据进行比较,我们将与工蜂繁殖能力变化相关的基因表达差异作为真社会性复杂性的函数进行了表征。通过与地螟幼虫中蜂后-工蜂等级发育相关基因的比较,我们验证了行为-形态等级同源假说,该假说提出了在形态等级进化中影响成虫生殖分工的基因的共选择。为了消除基因表达可能引起的混淆,我们对陆地芽孢杆菌工蚁卵中表达的分离基因进行了比较。工蚁表型间的基因表达差异主要在脂肪体和卵巢,而不是脑。许多基因(86%)在卵巢活跃的工蜂的卵巢中高表达,也在工蜂产下的卵中表达,证实了卵表达基因可能存在混淆。通过对地螟和蜜蜂以及地螟幼虫的比较,发现差异表达基因和/或丰富的基因本体论术语有显著比例的重叠,这表明保守的基因功能支撑着工蜂的繁殖能力,因为它随着社会复杂性的增加而下降,并为行为形态等级同源假说提供了支持。因此,在蜜蜂内部,一定程度的保守基因使用和基因共同选择似乎是工蜂繁殖和形态等级进化的分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Massive gene loss in the fungus Sporothrix epigloea accompanied a shift to life in a glucuronoxylomannan-based gel matrix. Plasmodium falciparum CyRPA glycan binding does not explain adaptation to humans. Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome. Functional carbohydrate-active enzymes acquired by horizontal gene transfer from plants in the whitefly Bemisia tabaci. Convergent evolution and predictability of gene copy numbers associated with diets in mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1