Field EPSPs of Dentate Gyrus Granule Cells Studied by Selective Optogenetic Activation of Hilar Mossy Cells in Hippocampal Slices

IF 2.4 3区 医学 Q3 NEUROSCIENCES Hippocampus Pub Date : 2024-12-12 DOI:10.1002/hipo.23652
Hannah L. Bernstein, Yi-Ling Lu, Justin J. Botterill, Áine M. Duffy, John J. LaFrancois, Helen E. Scharfman
{"title":"Field EPSPs of Dentate Gyrus Granule Cells Studied by Selective Optogenetic Activation of Hilar Mossy Cells in Hippocampal Slices","authors":"Hannah L. Bernstein,&nbsp;Yi-Ling Lu,&nbsp;Justin J. Botterill,&nbsp;Áine M. Duffy,&nbsp;John J. LaFrancois,&nbsp;Helen E. Scharfman","doi":"10.1002/hipo.23652","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively. Here we describe methods to selectively activate MC axons in the IML using mice with Cre recombinase expressed in MCs. Slices were made after injecting adeno-associated virus (AAV) encoding channelrhodopsin (ChR2) in the DG. In these slices, we show that fEPSPs could be recorded reliably in the IML in response to optogenetic stimulation of MC axons. Furthermore, fEPSPs were widespread across the septotemporal axis. However, fEPSPs were relatively weak because they were small in amplitude and did not elicit a significant population spike in GCs. They also showed little paired pulse facilitation. We confirmed the extracellular findings with patch clamp recordings of GCs despite different recording chambers and other differences in methods. Together the results provide a simple method for studying MC activation of GCs and add to the evidence that this input is normally weak but widespread across the GC population.</p>\n </div>","PeriodicalId":13171,"journal":{"name":"Hippocampus","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hippocampus","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hipo.23652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively. Here we describe methods to selectively activate MC axons in the IML using mice with Cre recombinase expressed in MCs. Slices were made after injecting adeno-associated virus (AAV) encoding channelrhodopsin (ChR2) in the DG. In these slices, we show that fEPSPs could be recorded reliably in the IML in response to optogenetic stimulation of MC axons. Furthermore, fEPSPs were widespread across the septotemporal axis. However, fEPSPs were relatively weak because they were small in amplitude and did not elicit a significant population spike in GCs. They also showed little paired pulse facilitation. We confirmed the extracellular findings with patch clamp recordings of GCs despite different recording chambers and other differences in methods. Together the results provide a simple method for studying MC activation of GCs and add to the evidence that this input is normally weak but widespread across the GC population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海马门门苔藓细胞的选择性光遗传激活研究齿状回颗粒细胞的场EPSPs。
谷氨酸能齿状回(DG)苔藓细胞(MCs)支配原代的DG细胞类型——颗粒细胞(GCs)。内分子层(IML)的GC近端树突上有大量的MC突触。然而,GC兴奋性突触后电位(fEPSPs)的现场记录尚未被用于选择性地研究这一途径。在这里,我们描述了使用MCs中表达的Cre重组酶的小鼠选择性激活IML中MC轴突的方法。在DG中注射编码通道视紫红质(ChR2)的腺相关病毒(AAV)制成切片。在这些切片中,我们发现在MC轴突的光遗传刺激下,IML中可以可靠地记录fEPSPs。此外,fepsp广泛分布于中隔颞轴。然而,fEPSPs相对较弱,因为它们的振幅较小,并且没有引起显著的GCs群体峰值。他们也表现出很少的成对脉冲促进。尽管不同的记录室和其他不同的方法,我们用膜片钳记录的GCs证实了细胞外的发现。总之,这些结果为研究GC的MC激活提供了一种简单的方法,并增加了这种输入通常很弱但在GC群体中广泛存在的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hippocampus
Hippocampus 医学-神经科学
CiteScore
5.80
自引率
5.70%
发文量
79
审稿时长
3-8 weeks
期刊介绍: Hippocampus provides a forum for the exchange of current information between investigators interested in the neurobiology of the hippocampal formation and related structures. While the relationships of submitted papers to the hippocampal formation will be evaluated liberally, the substance of appropriate papers should deal with the hippocampal formation per se or with the interaction between the hippocampal formation and other brain regions. The scope of Hippocampus is wide: single and multidisciplinary experimental studies from all fields of basic science, theoretical papers, papers dealing with hippocampal preparations as models for understanding the central nervous system, and clinical studies will be considered for publication. The Editor especially encourages the submission of papers that contribute to a functional understanding of the hippocampal formation.
期刊最新文献
Abnormal Astrocyte Heterogeneity in the Dentate Gyrus of Rats Prone to Audiogenic Seizures Can Be Corrected by the Nootropic Drug Piracetam. Episodic Aspects of a Path Navigated Through Hippocampal Neurobiology. How Ideas About Context and Remapping Developed in Brooklyn. Transcranial Direct Current Stimulation Over Bilateral Temporal Lobes Modulates Hippocampal-Occipital Functional Connectivity and Visual Short-Term Memory Precision. Development of the SPEAR Model: Separate Phases of Encoding and Retrieval Are Necessary for Storing Multiple Overlapping Associative Memories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1