MeiLi Papa, Aarham Wasit, Justin Pecora, Teresa M Bergholz, Jiyoon Yi
{"title":"Detection of Viable but Nonculturable E. coli Induced by Low-Level Antimicrobials Using AI-Enabled Hyperspectral Microscopy.","authors":"MeiLi Papa, Aarham Wasit, Justin Pecora, Teresa M Bergholz, Jiyoon Yi","doi":"10.1016/j.jfp.2024.100430","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid detection of bacterial pathogens is essential for food safety and public health, yet bacteria can evade detection by entering a viable but nonculturable (VBNC) state under sublethal stress, such as antimicrobial residues. These bacteria remain active but undetectable by standard culture-based methods without extensive enrichment, necessitating advanced detection methods. This study developed an AI-enabled hyperspectral microscope imaging (HMI) framework for rapid VBNC detection under low-level antimicrobials. The objectives were to (i) induce the VBNC state in Escherichia coli K-12 by exposure to selected antimicrobial stressors, (ii) obtain HMI data capturing physiological changes in VBNC cells, and (iii) automate the classification of normal and VBNC cells using deep learning image classification. The VBNC state was induced by low-level oxidative (0.01% hydrogen peroxide) and acidic (0.001% peracetic acid) stressors for 3 days, confirmed by live-dead staining and plate counting. HMI provided spatial and spectral data, extracted into pseudo-RGB images using three characteristic spectral wavelengths. An EfficientNetV2-based convolutional neural network architecture was trained on these pseudo-RGB images, achieving 97.1% accuracy of VBNC classification (n = 200), outperforming the model trained on RGB images at 83.3%. The results highlight the potential for rapid, automated VBNC detection using AI-enabled hyperspectral microscopy, contributing to timely intervention to prevent foodborne illnesses and outbreaks.</p>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":" ","pages":"100430"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jfp.2024.100430","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid detection of bacterial pathogens is essential for food safety and public health, yet bacteria can evade detection by entering a viable but nonculturable (VBNC) state under sublethal stress, such as antimicrobial residues. These bacteria remain active but undetectable by standard culture-based methods without extensive enrichment, necessitating advanced detection methods. This study developed an AI-enabled hyperspectral microscope imaging (HMI) framework for rapid VBNC detection under low-level antimicrobials. The objectives were to (i) induce the VBNC state in Escherichia coli K-12 by exposure to selected antimicrobial stressors, (ii) obtain HMI data capturing physiological changes in VBNC cells, and (iii) automate the classification of normal and VBNC cells using deep learning image classification. The VBNC state was induced by low-level oxidative (0.01% hydrogen peroxide) and acidic (0.001% peracetic acid) stressors for 3 days, confirmed by live-dead staining and plate counting. HMI provided spatial and spectral data, extracted into pseudo-RGB images using three characteristic spectral wavelengths. An EfficientNetV2-based convolutional neural network architecture was trained on these pseudo-RGB images, achieving 97.1% accuracy of VBNC classification (n = 200), outperforming the model trained on RGB images at 83.3%. The results highlight the potential for rapid, automated VBNC detection using AI-enabled hyperspectral microscopy, contributing to timely intervention to prevent foodborne illnesses and outbreaks.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.