Carbon dynamics in seawater and sediment: A case study of shellfish and seaweed mariculture systems.

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-12-05 DOI:10.1016/j.marenvres.2024.106897
Lili Xu, Yufeng Yang, Zongbin Cui, Qing Wang
{"title":"Carbon dynamics in seawater and sediment: A case study of shellfish and seaweed mariculture systems.","authors":"Lili Xu, Yufeng Yang, Zongbin Cui, Qing Wang","doi":"10.1016/j.marenvres.2024.106897","DOIUrl":null,"url":null,"abstract":"<p><p>Shellfish and seaweed, the primary mariculture species in China, generate significant amounts of dissolved organic matter (DOM) during growth. This production significantly influences the carbon cycle in the marine environment. In the present study, we evaluated the DOM changes during growth in both seawater and sediments in Nan'ao, Guangdong Province, southern China. The results showed that both shellfish and seaweed growth increased organic carbon content in seawater and sediments. DOM and water-extractable organic matter in the seaweed cultivation area exhibited greater aromaticity and hydrophobicity, indicating that seaweed-produced organic matter is more difficult to decompose and resistant to consumption. This implies a potential to expand the refractory dissolved organic carbon (RDOC) pool in the marine environment. We also estimated carbon removal and carbon sequestration by shellfish and seaweed culture in Guangdong Province from 2012 to 2021. Average carbon removal by shellfish cultivation is at 227.81 Gg C yr<sup>-1</sup>, and the release of carbon is at 205.71 Gg C yr<sup>-1</sup>. Carbon removal by seaweed cultivation is at 22.95 Gg C yr<sup>-1</sup> with carbon sequestration of 11.89 Gg C yr<sup>-1</sup>. Compared with shellfish, seaweed has a large carbon sequestration potential. The integrated aquaculture of shellfish and seaweed in adjacent areas, given the environmental and socioeconomic benefits of absorbing nitrogen and phosphorus nutrients, mitigating eutrophication, and ocean acidification, is advisable for coastal developing countries to promote shellfish-seaweed farming.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106897"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106897","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Shellfish and seaweed, the primary mariculture species in China, generate significant amounts of dissolved organic matter (DOM) during growth. This production significantly influences the carbon cycle in the marine environment. In the present study, we evaluated the DOM changes during growth in both seawater and sediments in Nan'ao, Guangdong Province, southern China. The results showed that both shellfish and seaweed growth increased organic carbon content in seawater and sediments. DOM and water-extractable organic matter in the seaweed cultivation area exhibited greater aromaticity and hydrophobicity, indicating that seaweed-produced organic matter is more difficult to decompose and resistant to consumption. This implies a potential to expand the refractory dissolved organic carbon (RDOC) pool in the marine environment. We also estimated carbon removal and carbon sequestration by shellfish and seaweed culture in Guangdong Province from 2012 to 2021. Average carbon removal by shellfish cultivation is at 227.81 Gg C yr-1, and the release of carbon is at 205.71 Gg C yr-1. Carbon removal by seaweed cultivation is at 22.95 Gg C yr-1 with carbon sequestration of 11.89 Gg C yr-1. Compared with shellfish, seaweed has a large carbon sequestration potential. The integrated aquaculture of shellfish and seaweed in adjacent areas, given the environmental and socioeconomic benefits of absorbing nitrogen and phosphorus nutrients, mitigating eutrophication, and ocean acidification, is advisable for coastal developing countries to promote shellfish-seaweed farming.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Corrigendum to "Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries" [Mar. Environ. Res. 204 (2025) 106901]. Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon. Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme. Microscale intertidal habitats modulate shell break resistance of the prey; Implications for prey selection. Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1