{"title":"Spatial and temporal variation of nutrient distribution in the Yangtze River estuary and adjacent waters: Insights from GOCI data analysis.","authors":"Chaozhi Yu, Cancan Lu, Yangdong Li, Hongli Li, Jun Lin, Liang Chang","doi":"10.1016/j.marenvres.2024.106895","DOIUrl":null,"url":null,"abstract":"<p><p>Nutrients are critical in assessing water quality, so understanding their distribution and variability is essential for effective marine environmental protection. This study focuses on the Yangtze River estuary and surrounding waters, where suspended solids show a strong correlation with active phosphates and silicates. Using GOCI imagery and measured nutrient concentrations, such as active phosphate and silicate, remote sensing models were developed to investigate the seasonal and daily changes in surface water nutrients. The results showed the following key findings: Temporally, active phosphate (PO<sub>4</sub>-P) and silicate (SiO<sub>3</sub>-Si) concentrations exhibited distinct seasonal patterns, with the highest values observed in winter (1.692 μmol/L and 16.386 μmol/L, respectively) and the lowest in summer (0.503 μmol/L and 10.645 μmol/L, respectively). Little difference was found between spring and autumn. Spatially, elevated phosphate and silicate concentrations were found near the northern Jiangsu Shoal, the Yangtze River estuary, and Hangzhou Bay, and decreased towards the outer coastal waters. This suggests that the freshwater inflow from the Yangtze River is an important driver of the observed nutrient patterns. Diurnal variations in phosphate and silicate concentrations were observed in the surface waters of the Yangtze River estuary and adjacent areas. Significant diurnal variations in nutrient concentrations were observed in Hangzhou Bay, the northern part of the Yangtze River estuary and the southern part of the Yangtze River estuary. Slight diurnal variations were observed in the inland channels of the estuary. These results help to facilitate the study of the complex process of spatial and temporal dynamics of nutrients in the coastal waters of eastern China.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106895"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106895","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nutrients are critical in assessing water quality, so understanding their distribution and variability is essential for effective marine environmental protection. This study focuses on the Yangtze River estuary and surrounding waters, where suspended solids show a strong correlation with active phosphates and silicates. Using GOCI imagery and measured nutrient concentrations, such as active phosphate and silicate, remote sensing models were developed to investigate the seasonal and daily changes in surface water nutrients. The results showed the following key findings: Temporally, active phosphate (PO4-P) and silicate (SiO3-Si) concentrations exhibited distinct seasonal patterns, with the highest values observed in winter (1.692 μmol/L and 16.386 μmol/L, respectively) and the lowest in summer (0.503 μmol/L and 10.645 μmol/L, respectively). Little difference was found between spring and autumn. Spatially, elevated phosphate and silicate concentrations were found near the northern Jiangsu Shoal, the Yangtze River estuary, and Hangzhou Bay, and decreased towards the outer coastal waters. This suggests that the freshwater inflow from the Yangtze River is an important driver of the observed nutrient patterns. Diurnal variations in phosphate and silicate concentrations were observed in the surface waters of the Yangtze River estuary and adjacent areas. Significant diurnal variations in nutrient concentrations were observed in Hangzhou Bay, the northern part of the Yangtze River estuary and the southern part of the Yangtze River estuary. Slight diurnal variations were observed in the inland channels of the estuary. These results help to facilitate the study of the complex process of spatial and temporal dynamics of nutrients in the coastal waters of eastern China.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.