Deconstructing the neural circuit underlying social hierarchy in mice.

IF 14.7 1区 医学 Q1 NEUROSCIENCES Neuron Pub Date : 2025-02-05 Epub Date: 2024-12-10 DOI:10.1016/j.neuron.2024.11.007
Qiuhong Xin, Diyang Zheng, Tingting Zhou, Jiayi Xu, Zheyi Ni, Hailan Hu
{"title":"Deconstructing the neural circuit underlying social hierarchy in mice.","authors":"Qiuhong Xin, Diyang Zheng, Tingting Zhou, Jiayi Xu, Zheyi Ni, Hailan Hu","doi":"10.1016/j.neuron.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"444-459.e7"},"PeriodicalIF":14.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.11.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解构小鼠社会等级的神经回路。
社会竞争决定了社会地位的等级,这深刻地影响着动物的行为和健康。背内侧前额叶皮层(dmPFC)在调节社会竞争中起着重要作用,但目前尚不清楚dmPFC如何通过其下游神经回路协调与输赢相关的行为。在这里,通过全脑c-Fos定位、纤维光度测定和光遗传学或化学遗传学操作,我们确定了小鼠dmPFC下游解剖上分离的输赢相关神经通路。具体来说,投射到中隔背核(DRN)和导水管周围灰质(PAG)的第5层神经元促进社会竞争,而投射到前基底外侧杏仁核(aBLA)的第2/3层神经元抑制竞争。这两个神经元群在竞争中表现出相反的活动变化。体内和体外电生理记录显示,从输相关途径到赢相关途径的抑制。这种对抗性的相互作用可能代表了mPFC如何通过自上而下的控制来协调复杂行为的核心原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
期刊最新文献
Retraction Notice to: Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Retraction Notice to: Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. Structural basis for channel gating and blockade in tri-heteromeric GluN1-2B-2D NMDA receptor. Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1