Comparison of long and short rest periods during high-intensity interval exercise on transcriptomic responses in equine skeletal muscle.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2024-12-11 DOI:10.1152/physiolgenomics.00066.2024
Kenya Takahashi, Kazutaka Mukai, Yuji Takahashi, Yusaku Ebisuda, Hideo Hatta, Yu Kitaoka
{"title":"Comparison of long and short rest periods during high-intensity interval exercise on transcriptomic responses in equine skeletal muscle.","authors":"Kenya Takahashi, Kazutaka Mukai, Yuji Takahashi, Yusaku Ebisuda, Hideo Hatta, Yu Kitaoka","doi":"10.1152/physiolgenomics.00066.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to elucidate the skeletal muscle transcriptomic response unique to rest duration during high-intensity interval exercise. Thoroughbred horses performed three 1-min bouts of exercise at their maximal oxygen uptake (10.7-12.5 m/s), separated by 15 min (long) or 2 min (short) walking at 1.7 m/s. Gluteus medius muscle was collected before and at 4 h after the exercise and used for RNA sequencing. We identified 1,756 and 1,421 differentially expressed genes in response to the long and short protocols, respectively using DEseq2 analysis [false discovery rate (FDR) cutoff = 0.05, minimal fold change = 1.5]. The overall transcriptional response was partially aligned, with 43% (n=949) of genes altered in both protocols, whereas no discordant directional changes were observed. K-means clustering and gene set enrichment analyses based on gene ontology biological process terms showed that genes associated with muscle adaptation and development were upregulated regardless of exercise conditions; genes related to immune and cytokine responses were more upregulated following the long protocol, and protein folding and temperature response were highly expressed after the short protocol. We found that 11 genes were upregulated to a greater extent by the short protocol and one was by the long protocol, with <i>GNA13</i>, <i>SPART</i>, <i>PHAF1</i>, and <i>PTX3</i> identified as potential candidates for skeletal muscle remodeling. Our results suggest that altered metabolic fluctuations dependent on the intermittent pattern of interval exercise modulate skeletal muscle gene expression, and therefore rest interval length could be an important consideration in optimizing skeletal muscle adaptation.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00066.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to elucidate the skeletal muscle transcriptomic response unique to rest duration during high-intensity interval exercise. Thoroughbred horses performed three 1-min bouts of exercise at their maximal oxygen uptake (10.7-12.5 m/s), separated by 15 min (long) or 2 min (short) walking at 1.7 m/s. Gluteus medius muscle was collected before and at 4 h after the exercise and used for RNA sequencing. We identified 1,756 and 1,421 differentially expressed genes in response to the long and short protocols, respectively using DEseq2 analysis [false discovery rate (FDR) cutoff = 0.05, minimal fold change = 1.5]. The overall transcriptional response was partially aligned, with 43% (n=949) of genes altered in both protocols, whereas no discordant directional changes were observed. K-means clustering and gene set enrichment analyses based on gene ontology biological process terms showed that genes associated with muscle adaptation and development were upregulated regardless of exercise conditions; genes related to immune and cytokine responses were more upregulated following the long protocol, and protein folding and temperature response were highly expressed after the short protocol. We found that 11 genes were upregulated to a greater extent by the short protocol and one was by the long protocol, with GNA13, SPART, PHAF1, and PTX3 identified as potential candidates for skeletal muscle remodeling. Our results suggest that altered metabolic fluctuations dependent on the intermittent pattern of interval exercise modulate skeletal muscle gene expression, and therefore rest interval length could be an important consideration in optimizing skeletal muscle adaptation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Integrated Analysis of Methylome and Transcriptome Responses to Exercise Training in Children with Overweight/Obesity. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer. Age-related differences in gene expression and pathway activation following heat stroke. Physiological, biochemical and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1