Language task-based fMRI analysis using machine learning and deep learning.

Frontiers in radiology Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.3389/fradi.2024.1495181
Elaine Kuan, Viktor Vegh, John Phamnguyen, Kieran O'Brien, Amanda Hammond, David Reutens
{"title":"Language task-based fMRI analysis using machine learning and deep learning.","authors":"Elaine Kuan, Viktor Vegh, John Phamnguyen, Kieran O'Brien, Amanda Hammond, David Reutens","doi":"10.3389/fradi.2024.1495181","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Task-based language fMRI is a non-invasive method of identifying brain regions subserving language that is used to plan neurosurgical resections which potentially encroach on eloquent regions. The use of unstructured fMRI paradigms, such as naturalistic fMRI, to map language is of increasing interest. Their analysis necessitates the use of alternative methods such as machine learning (ML) and deep learning (DL) because task regressors may be difficult to define in these paradigms.</p><p><strong>Methods: </strong>Using task-based language fMRI as a starting point, this study investigates the use of different categories of ML and DL algorithms to identify brain regions subserving language. Data comprising of seven task-based language fMRI paradigms were collected from 26 individuals, and ML and DL models were trained to classify voxel-wise fMRI time series.</p><p><strong>Results: </strong>The general machine learning and the interval-based methods were the most promising in identifying language areas using fMRI time series classification. The geneal machine learning method achieved a mean whole-brain Area Under the Receiver Operating Characteristic Curve (AUC) of <math><mn>0.97</mn> <mo>±</mo> <mn>0.03</mn></math> , mean Dice coefficient of <math><mn>0.6</mn> <mo>±</mo> <mn>0.34</mn></math> and mean Euclidean distance of <math><mn>2.7</mn> <mo>±</mo> <mn>2.4</mn></math>  mm between activation peaks across the evaluated regions of interest. The interval-based method achieved a mean whole-brain AUC of <math><mn>0.96</mn> <mo>±</mo> <mn>0.03</mn></math> , mean Dice coefficient of <math><mn>0.61</mn> <mo>±</mo> <mn>0.33</mn></math> and mean Euclidean distance of <math><mn>3.3</mn> <mo>±</mo> <mn>2.7</mn></math>  mm between activation peaks across the evaluated regions of interest.</p><p><strong>Discussion: </strong>This study demonstrates the utility of different ML and DL methods in classifying task-based language fMRI time series. A potential application of these methods is the identification of language activation from unstructured paradigms.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"4 ","pages":"1495181"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2024.1495181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Task-based language fMRI is a non-invasive method of identifying brain regions subserving language that is used to plan neurosurgical resections which potentially encroach on eloquent regions. The use of unstructured fMRI paradigms, such as naturalistic fMRI, to map language is of increasing interest. Their analysis necessitates the use of alternative methods such as machine learning (ML) and deep learning (DL) because task regressors may be difficult to define in these paradigms.

Methods: Using task-based language fMRI as a starting point, this study investigates the use of different categories of ML and DL algorithms to identify brain regions subserving language. Data comprising of seven task-based language fMRI paradigms were collected from 26 individuals, and ML and DL models were trained to classify voxel-wise fMRI time series.

Results: The general machine learning and the interval-based methods were the most promising in identifying language areas using fMRI time series classification. The geneal machine learning method achieved a mean whole-brain Area Under the Receiver Operating Characteristic Curve (AUC) of 0.97 ± 0.03 , mean Dice coefficient of 0.6 ± 0.34 and mean Euclidean distance of 2.7 ± 2.4  mm between activation peaks across the evaluated regions of interest. The interval-based method achieved a mean whole-brain AUC of 0.96 ± 0.03 , mean Dice coefficient of 0.61 ± 0.33 and mean Euclidean distance of 3.3 ± 2.7  mm between activation peaks across the evaluated regions of interest.

Discussion: This study demonstrates the utility of different ML and DL methods in classifying task-based language fMRI time series. A potential application of these methods is the identification of language activation from unstructured paradigms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习和深度学习的基于语言任务的fMRI分析。
基于任务的语言功能磁共振成像(fMRI)是一种非侵入性的方法,用于识别服务语言的大脑区域,用于计划可能侵犯雄辩区域的神经外科手术切除。使用非结构化的功能磁共振成像范式,如自然功能磁共振成像,来绘制语言的兴趣越来越大。他们的分析需要使用替代方法,如机器学习(ML)和深度学习(DL),因为任务回归量可能难以在这些范式中定义。方法:本研究以基于任务的语言功能磁共振成像为出发点,研究了使用不同类别的ML和DL算法来识别服务语言的大脑区域。从26个个体中收集了7个基于任务的语言fMRI范式数据,并训练ML和DL模型对体素方向的fMRI时间序列进行分类。结果:通用机器学习和基于区间的方法在fMRI时间序列分类识别语言区域方面最有前途。一般的机器学习方法获得了接受者工作特征曲线下的平均全脑面积(AUC)为0.97±0.03,平均Dice系数为0.6±0.34,平均欧几里得距离为2.7±2.4 mm。基于区间的方法获得的全脑平均AUC为0.96±0.03,平均Dice系数为0.61±0.33,平均欧几里得距离为3.3±2.7 mm。讨论:本研究展示了不同的ML和DL方法在分类基于任务的语言fMRI时间序列中的效用。这些方法的一个潜在应用是从非结构化范式中识别语言激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Current state and promise of user-centered design to harness explainable AI in clinical decision-support systems for patients with CNS tumors. DreamOn: a data augmentation strategy to narrow the robustness gap between expert radiologists and deep learning classifiers. Editorial: Advances in artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors. Synthesis of MR fingerprinting information from magnitude-only MR imaging data using a parallelized, multi network U-Net convolutional neural network. Pneumothorax detection and segmentation from chest X-ray radiographs using a patch-based fully convolutional encoder-decoder network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1