Treatment of compound pollution in simulated livestock and poultry wastewater by algae-bacteria symbiosis system.

Bo Wang, Lijie Zhang, Lu Lian, Xiao Zhang, Yuejun Qi
{"title":"Treatment of compound pollution in simulated livestock and poultry wastewater by algae-bacteria symbiosis system.","authors":"Bo Wang, Lijie Zhang, Lu Lian, Xiao Zhang, Yuejun Qi","doi":"10.1016/j.chemosphere.2024.143927","DOIUrl":null,"url":null,"abstract":"<p><p>Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis. The results show that the presence of bacteria greatly promoted the growth of microalgae, with production of 0.50-0.59 g/L biomass and 17.5% lipid content. Lipid levels in the algae from the symbiotic system were 1.3 times higher than for the system of pure algae, which is attributed to the bacteria releasing extracellular substances to promote their own growth and providing small molecules of organic matter and other essential elements which can be used by microalgae. In addition, during the removal of complex pollutants in the symbiotic system we found that the main contributor to the removal of heavy metal ions was the adsorption by Chlorella, while the decomposition of antibiotics mainly originated from bacteria. Furthermore, in the context of this experiment was obtained the highest removal rate of SM2 reached 28.8%, while the removal rate of Cu(II) reached 60.6%-66.7%. The technology of symbiotic treatment of wastewater from livestock and poultry breeding fills a gap and lays a theoretical foundation for the improvement of wastewater treatment.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143927"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis. The results show that the presence of bacteria greatly promoted the growth of microalgae, with production of 0.50-0.59 g/L biomass and 17.5% lipid content. Lipid levels in the algae from the symbiotic system were 1.3 times higher than for the system of pure algae, which is attributed to the bacteria releasing extracellular substances to promote their own growth and providing small molecules of organic matter and other essential elements which can be used by microalgae. In addition, during the removal of complex pollutants in the symbiotic system we found that the main contributor to the removal of heavy metal ions was the adsorption by Chlorella, while the decomposition of antibiotics mainly originated from bacteria. Furthermore, in the context of this experiment was obtained the highest removal rate of SM2 reached 28.8%, while the removal rate of Cu(II) reached 60.6%-66.7%. The technology of symbiotic treatment of wastewater from livestock and poultry breeding fills a gap and lays a theoretical foundation for the improvement of wastewater treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of iron-modified biochar on phosphate transport and deposition in saturated porous media under varying pH, ionic strength, and biochar dosage. Evidences of the electrogenic sulfur oxidation in constructed wetlands. Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod. Encapsulation of fluorescent carbon dots into mesoporous SiO2 colloidal spheres by surface functionalization-assisted cooperative assembly for high-contrast latent fingerprint development. A biomarkers study of human skin fibroblasts exposition to glyphosate-based herbicide using an untargeted and targeted metabolomics approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1