Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing.

Cell systems Pub Date : 2024-12-18 Epub Date: 2024-12-10 DOI:10.1016/j.cels.2024.11.005
Lena Erlach, Raphael Kuhn, Andreas Agrafiotis, Danielle Shlesinger, Alexander Yermanos, Sai T Reddy
{"title":"Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing.","authors":"Lena Erlach, Raphael Kuhn, Andreas Agrafiotis, Danielle Shlesinger, Alexander Yermanos, Sai T Reddy","doi":"10.1016/j.cels.2024.11.005","DOIUrl":null,"url":null,"abstract":"<p><p>The field of antibody discovery typically involves extensive experimental screening of B cells from immunized animals. Machine learning (ML)-guided prediction of antigen-specific B cells could accelerate this process but requires sufficient training data with antigen-specificity labeling. Here, we introduce a dataset of single-cell transcriptome and antibody repertoire sequencing of B cells from immunized mice, which are labeled as antigen specific or non-specific through experimental selections. We identify gene expression patterns associated with antigen specificity by differential gene expression analysis and assess their antibody sequence diversity. Subsequently, we benchmark various ML models, both linear and non-linear, trained on different combinations of gene expression and antibody repertoire features. Additionally, we assess transfer learning using features from general and antibody-specific protein language models (PLMs). Our findings show that gene expression-based models outperform sequence-based models for antigen-specificity predictions, highlighting a promising avenue for computationally guided antibody discovery.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1295-1303.e5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.11.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of antibody discovery typically involves extensive experimental screening of B cells from immunized animals. Machine learning (ML)-guided prediction of antigen-specific B cells could accelerate this process but requires sufficient training data with antigen-specificity labeling. Here, we introduce a dataset of single-cell transcriptome and antibody repertoire sequencing of B cells from immunized mice, which are labeled as antigen specific or non-specific through experimental selections. We identify gene expression patterns associated with antigen specificity by differential gene expression analysis and assess their antibody sequence diversity. Subsequently, we benchmark various ML models, both linear and non-linear, trained on different combinations of gene expression and antibody repertoire features. Additionally, we assess transfer learning using features from general and antibody-specific protein language models (PLMs). Our findings show that gene expression-based models outperform sequence-based models for antigen-specificity predictions, highlighting a promising avenue for computationally guided antibody discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. A three-node Turing gene circuit forms periodic spatial patterns in bacteria. Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells. Optimized reporters for multiplexed detection of transcription factor activity. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1