Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing.

Cell systems Pub Date : 2024-12-18 Epub Date: 2024-12-10 DOI:10.1016/j.cels.2024.11.005
Lena Erlach, Raphael Kuhn, Andreas Agrafiotis, Danielle Shlesinger, Alexander Yermanos, Sai T Reddy
{"title":"Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing.","authors":"Lena Erlach, Raphael Kuhn, Andreas Agrafiotis, Danielle Shlesinger, Alexander Yermanos, Sai T Reddy","doi":"10.1016/j.cels.2024.11.005","DOIUrl":null,"url":null,"abstract":"<p><p>The field of antibody discovery typically involves extensive experimental screening of B cells from immunized animals. Machine learning (ML)-guided prediction of antigen-specific B cells could accelerate this process but requires sufficient training data with antigen-specificity labeling. Here, we introduce a dataset of single-cell transcriptome and antibody repertoire sequencing of B cells from immunized mice, which are labeled as antigen specific or non-specific through experimental selections. We identify gene expression patterns associated with antigen specificity by differential gene expression analysis and assess their antibody sequence diversity. Subsequently, we benchmark various ML models, both linear and non-linear, trained on different combinations of gene expression and antibody repertoire features. Additionally, we assess transfer learning using features from general and antibody-specific protein language models (PLMs). Our findings show that gene expression-based models outperform sequence-based models for antigen-specificity predictions, highlighting a promising avenue for computationally guided antibody discovery.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1295-1303.e5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.11.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of antibody discovery typically involves extensive experimental screening of B cells from immunized animals. Machine learning (ML)-guided prediction of antigen-specific B cells could accelerate this process but requires sufficient training data with antigen-specificity labeling. Here, we introduce a dataset of single-cell transcriptome and antibody repertoire sequencing of B cells from immunized mice, which are labeled as antigen specific or non-specific through experimental selections. We identify gene expression patterns associated with antigen specificity by differential gene expression analysis and assess their antibody sequence diversity. Subsequently, we benchmark various ML models, both linear and non-linear, trained on different combinations of gene expression and antibody repertoire features. Additionally, we assess transfer learning using features from general and antibody-specific protein language models (PLMs). Our findings show that gene expression-based models outperform sequence-based models for antigen-specificity predictions, highlighting a promising avenue for computationally guided antibody discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过单细胞转录组和抗体库测序评估抗原特异性B细胞的预测模式。
抗体发现领域通常涉及对免疫动物的B细胞进行广泛的实验筛选。机器学习(ML)引导的抗原特异性B细胞预测可以加速这一过程,但需要足够的抗原特异性标记训练数据。在这里,我们介绍了免疫小鼠B细胞的单细胞转录组和抗体库测序数据集,这些B细胞通过实验选择被标记为抗原特异性或非特异性。我们通过差异基因表达分析确定与抗原特异性相关的基因表达模式,并评估其抗体序列多样性。随后,我们对各种ML模型进行了基准测试,包括线性和非线性模型,对基因表达和抗体库特征的不同组合进行了训练。此外,我们使用通用和抗体特异性蛋白质语言模型(PLMs)的特征来评估迁移学习。我们的研究结果表明,基于基因表达的模型在抗原特异性预测方面优于基于序列的模型,这为计算指导的抗体发现提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeST-OT: Alignment of spatiotemporal transcriptomics data. Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Stochastic modeling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. Active learning of enhancers and silencers in the developing neural retina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1