Evan Becker;Parthe Pandit;Sundeep Rangan;Alyson K. Fletcher
{"title":"GAN Training With Kernel Discriminators: What Parameters Control Convergence Rates?","authors":"Evan Becker;Parthe Pandit;Sundeep Rangan;Alyson K. Fletcher","doi":"10.1109/TSP.2024.3516083","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) are widely used for modeling complex data. However, the dynamics of the gradient descent-ascent (GDA) algorithms, often used for training GANs, have been notoriously difficult to analyze. We study these dynamics in the case where the discriminator is kernel-based and the true distribution consists of discrete points in Euclidean space. Prior works have analyzed the GAN dynamics in such scenarios via simple linearization close to the equilibrium. In this work, we show that linearized analysis can be grossly inaccurate, even at moderate distances from the equilibrium. We then propose an alternative non-linear yet tractable <italic>second moment model</i>. The proposed model predicts the convergence behavior well and reveals new insights about the role of the kernel width on convergence rate, not apparent in the linearized analysis. These insights suggest certain shapes of the kernel offer both fast local convergence and improved global convergence. We corroborate our theoretical results through simulations.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"433-445"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10795659/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Generative Adversarial Networks (GANs) are widely used for modeling complex data. However, the dynamics of the gradient descent-ascent (GDA) algorithms, often used for training GANs, have been notoriously difficult to analyze. We study these dynamics in the case where the discriminator is kernel-based and the true distribution consists of discrete points in Euclidean space. Prior works have analyzed the GAN dynamics in such scenarios via simple linearization close to the equilibrium. In this work, we show that linearized analysis can be grossly inaccurate, even at moderate distances from the equilibrium. We then propose an alternative non-linear yet tractable second moment model. The proposed model predicts the convergence behavior well and reveals new insights about the role of the kernel width on convergence rate, not apparent in the linearized analysis. These insights suggest certain shapes of the kernel offer both fast local convergence and improved global convergence. We corroborate our theoretical results through simulations.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.