Insights Into the Role of π‐Electrons of Aromatic Aldehydes in Passivating Perovskite Defects

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-13 DOI:10.1002/anie.202420369
Xiaoqing Jiang, Lina Zhu, Bingqian Zhang, Guangyue Yang, Likai Zheng, Kaiwen Dong, Yanfeng Yin, Minhuan Wang, Shiwei Liu, Shuping Pang, Xin Guo
{"title":"Insights Into the Role of π‐Electrons of Aromatic Aldehydes in Passivating Perovskite Defects","authors":"Xiaoqing Jiang, Lina Zhu, Bingqian Zhang, Guangyue Yang, Likai Zheng, Kaiwen Dong, Yanfeng Yin, Minhuan Wang, Shiwei Liu, Shuping Pang, Xin Guo","doi":"10.1002/anie.202420369","DOIUrl":null,"url":null,"abstract":"Carbonyl‐containing aromatic ketones or aldehydes have been demonstrated to be effective defect passivators for perovskite films to improve performances of perovskite solar cells (PSCs). It has been claimed that both π‐electrons within aromatic units and carbonyl groups can, separately, interact with ionic defects, which, however, causes troubles in understanding the passivation mechanism of those aromatic ketone/aldehyde molecules. Herein, we clarify the effect of both moieties in one molecule on the defect passivation by investigating three aromatic aldehydes with varied conjugation planes, namely, biphenyl‐4‐carbaldehyde (BPCA), naphthalene‐2‐carbaldehyde (NACA) and pyrene‐1‐carbaldehyde (PyCA). Our findings reveal that the π‐electrons located in the conjugated system do not directly present strong passivation for defects, but enhance the electron cloud density of the carbonyl group augmenting its interaction with defect sites; thereby, with the extended conjugation plane of the three molecules, their defect passivation ability is gradually improved. PSCs incorporating PyCA with the most extended π‐electrons delocalization achieve maximum power conversion efficiencies of 25.67% (0.09 cm²) and 21.76% (14.0 cm²). Moreover, these devices exhibit outstanding long‐term stability, retaining 95% of their initial efficiency after operation for 1000 hours at the maximum power point.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420369","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonyl‐containing aromatic ketones or aldehydes have been demonstrated to be effective defect passivators for perovskite films to improve performances of perovskite solar cells (PSCs). It has been claimed that both π‐electrons within aromatic units and carbonyl groups can, separately, interact with ionic defects, which, however, causes troubles in understanding the passivation mechanism of those aromatic ketone/aldehyde molecules. Herein, we clarify the effect of both moieties in one molecule on the defect passivation by investigating three aromatic aldehydes with varied conjugation planes, namely, biphenyl‐4‐carbaldehyde (BPCA), naphthalene‐2‐carbaldehyde (NACA) and pyrene‐1‐carbaldehyde (PyCA). Our findings reveal that the π‐electrons located in the conjugated system do not directly present strong passivation for defects, but enhance the electron cloud density of the carbonyl group augmenting its interaction with defect sites; thereby, with the extended conjugation plane of the three molecules, their defect passivation ability is gradually improved. PSCs incorporating PyCA with the most extended π‐electrons delocalization achieve maximum power conversion efficiencies of 25.67% (0.09 cm²) and 21.76% (14.0 cm²). Moreover, these devices exhibit outstanding long‐term stability, retaining 95% of their initial efficiency after operation for 1000 hours at the maximum power point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透视芳香族醛的π电子在钝化包晶缺陷中的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Lucas Foppa Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates Angewandte Chemie: One Journal, Many Faces Jordan Hobbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1