Investigating pressure effects of Ti and Zr partitioning into zircon, quartz, and rutile at crustal temperatures

IF 3.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Chemical Geology Pub Date : 2025-02-05 DOI:10.1016/j.chemgeo.2024.122518
Heather M. Kirkpatrick , Dustin Trail , T. Mark Harrison , Elizabeth A. Bell
{"title":"Investigating pressure effects of Ti and Zr partitioning into zircon, quartz, and rutile at crustal temperatures","authors":"Heather M. Kirkpatrick ,&nbsp;Dustin Trail ,&nbsp;T. Mark Harrison ,&nbsp;Elizabeth A. Bell","doi":"10.1016/j.chemgeo.2024.122518","DOIUrl":null,"url":null,"abstract":"<div><div>The dependency of Ti partitioning between quartz and zircon on the activity of TiO<sub>2</sub> and Zr partitioning between zircon and rutile on the activity of ZrO<sub>2</sub> suggest that an intercalibration among the three minerals (i.e., concentration information from all three phases in the same experiment) could reduce propagated errors when using multiple systems simultaneously. Experiments were undertaken to assess pressure effects in Ti and Zr partitioning in the zircon-quartz-rutile system and intercalibration of the three phases at low concentrations (down to ∼20 ppm). Analysis of small crystals (down to ∼8 μm) was possible due to the high spatial resolution of the CAMECA <em>ims</em>1290 ion microprobe. Regressions for pressure-temperature-phase domains for experiments between 800 and 1000 °C and 10 and 15 kbar array about the initial calibration data providing confidence in their merit despite recent criticisms. Ti and Zr partitioning into quartz, rutile, and zircon can be quantified as:<span><span><span><math><mo>log</mo><mfenced><mrow><mi>Ti</mi><mo>−</mo><mi>in</mi><mo>−</mo><mi>quartz</mi></mrow></mfenced><mo>+</mo><mo>log</mo><mspace></mspace><msubsup><mi>a</mi><mrow><mi>Si</mi><msub><mi>O</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup><mo>=</mo><mn>6.71</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.11</mn></mrow></mfenced><mo>−</mo><mfrac><mrow><mn>383</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>10</mn></mrow></mfenced></mrow><mrow><mi>T</mi><mspace></mspace><mfenced><mi>K</mi></mfenced></mrow></mfrac><mo>−</mo><mn>0.122</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.07</mn></mrow></mfenced><mi>P</mi><mo>−</mo><mn>0.00197</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.00024</mn></mrow></mfenced><msup><mi>P</mi><mn>2</mn></msup></math></span></span></span><span><span><span><math><mo>log</mo><mfenced><mrow><mi>Zr</mi><mo>−</mo><mi>in</mi><mo>−</mo><mi>rutile</mi></mrow></mfenced><mo>+</mo><mo>log</mo><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup><mo>=</mo><mn>7.39</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.21</mn></mrow></mfenced><mo>−</mo><mfrac><mrow><mn>4262</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>220</mn></mrow></mfenced></mrow><mrow><mi>T</mi><mspace></mspace><mfenced><mi>K</mi></mfenced></mrow></mfrac><mo>−</mo><mn>0.021</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.0051</mn></mrow></mfenced><mi>P</mi></math></span></span></span></div><div>and<span><span><span><math><mo>log</mo><mfenced><mrow><mi>Ti</mi><mo>−</mo><mi>in</mi><mo>−</mo><mi>zircon</mi></mrow></mfenced><mo>+</mo><mi>log</mi><mspace></mspace><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup><mo>=</mo><mfrac><mrow><mo>−</mo><mn>4147</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>555</mn></mrow></mfenced></mrow><mrow><mi>T</mi><mfenced><mi>K</mi></mfenced></mrow></mfrac><mo>−</mo><mn>5.30</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.41</mn></mrow></mfenced></math></span></span></span></div><div>where T is temperature (Kelvin), P is pressure (kbar), concentrations have units of ppm, and <span><math><msubsup><mi>a</mi><mrow><mi>Si</mi><msub><mi>O</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup></math></span> is the activity of SiO<sub>2</sub> referenced to α-quartz. Importantly, if α-quartz is present, <span><math><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup></math></span>is 1 and <span><math><mo>log</mo><mspace></mspace><mfenced><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup></mfenced></math></span> is zero.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"673 ","pages":"Article 122518"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254124005989","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dependency of Ti partitioning between quartz and zircon on the activity of TiO2 and Zr partitioning between zircon and rutile on the activity of ZrO2 suggest that an intercalibration among the three minerals (i.e., concentration information from all three phases in the same experiment) could reduce propagated errors when using multiple systems simultaneously. Experiments were undertaken to assess pressure effects in Ti and Zr partitioning in the zircon-quartz-rutile system and intercalibration of the three phases at low concentrations (down to ∼20 ppm). Analysis of small crystals (down to ∼8 μm) was possible due to the high spatial resolution of the CAMECA ims1290 ion microprobe. Regressions for pressure-temperature-phase domains for experiments between 800 and 1000 °C and 10 and 15 kbar array about the initial calibration data providing confidence in their merit despite recent criticisms. Ti and Zr partitioning into quartz, rutile, and zircon can be quantified as:logTiinquartz+logaSiO2αquartz=6.71±0.11383±10TK0.122±0.07P0.00197±0.00024P2logZrinrutile+logaSiO2αquartz=7.39±0.214262±220TK0.021±0.0051P
andlogTiinzircon+logaSiO2αquartz=4147±555TK5.30±0.41
where T is temperature (Kelvin), P is pressure (kbar), concentrations have units of ppm, and aSiO2αquartz is the activity of SiO2 referenced to α-quartz. Importantly, if α-quartz is present, aSiO2αquartzis 1 and logaSiO2αquartz is zero.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在地壳温度下研究钛和锆在锆石、石英和金红石中的分馏压力效应
石英和锆石之间的Ti分配依赖于TiO2的活性,锆石和金红石之间的Zr分配依赖于ZrO2的活性,这表明三种矿物之间的相互校准(即在同一实验中来自所有三个相的浓度信息)可以减少同时使用多个系统时的传播误差。实验评估了压力对锆-石英-金红石体系中Ti和Zr分配的影响,并在低浓度(低至~ 20 ppm)下对三相进行了相互校准。由于CAMECA ims1290离子微探针的高空间分辨率,可以分析小晶体(小至~ 8 μm)。800至1000°C和10至15 kbar阵列之间实验的压力-温度相位域的回归关于初始校准数据,尽管最近受到批评,但仍对其优点提供了信心。Ti和Zr在石英、金红石和锆石中的分异可量化为:logTi−in−石英+ logasio_2 α−石英=6.71±0.11−383±10TK−0.122±0.07P−0.00197±0.00024P2logZr−in−金红石+ logasio_2 α−石英=7.39±0.21−4262±220TK−0.021±0.0051P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Geology
Chemical Geology 地学-地球化学与地球物理
CiteScore
7.20
自引率
10.30%
发文量
374
审稿时长
3.6 months
期刊介绍: Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry. The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry. Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry. The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.
期刊最新文献
Apatite and magnetite as probes into dissimilatory iron reduction in banded iron formations Editorial Board Application of Ni, Cu and Fe isotopes as indicators of ore genesis - New insights from the epigenetic-hydrothermal Rajapalot AuCo prospect, Finnish Lapland Re-Os isotopic evidence for ancient melt depletion in refertilized Neo-Tethyan suboceanic mantle domain Preservation of biosignatures in Neoproterozoic phosphorites metamorphosed at temperatures >450 °C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1