Giant Nernst Angle in Self-Intercalated van der Waals Magnet Cr1.25Te2

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-12-13 DOI:10.1016/j.mtphys.2024.101627
Shuvankar Gupta, Olajumoke Oluwatobiloba Emmanuel, Yasemin Ozbek, Mingyu Xu, Weiwei Xie, Pengpeng Zhang, Xianglin Ke
{"title":"Giant Nernst Angle in Self-Intercalated van der Waals Magnet Cr1.25Te2","authors":"Shuvankar Gupta, Olajumoke Oluwatobiloba Emmanuel, Yasemin Ozbek, Mingyu Xu, Weiwei Xie, Pengpeng Zhang, Xianglin Ke","doi":"10.1016/j.mtphys.2024.101627","DOIUrl":null,"url":null,"abstract":"The discovery of two-dimensional van der Waals (vdW) magnetic materials has propelled advancements in technological devices. The Nernst effect, which generates a transverse electric voltage in the presence of a longitudinal thermal gradient, shows great promise for thermoelectric applications. In this work, we report the electronic and thermoelectric transport properties of Cr<sub>1.25</sub>Te<sub>2</sub>, a layered self-intercalated vdW material which exhibits an antiferromagnetic ordering at <em>T</em><sub><em>N</em></sub> ∼ 191 K followed by a ferromagnetic-like phase transition at <em>T</em><sub><em>C</em></sub> ∼171 K. We observe a prominent topological Hall effect and topological Nernst effect between <em>T</em><sub><em>C</em></sub> and <em>T</em><sub><em>N</em></sub>, which is ascribable to non-coplanar spin textures inducing a real-space Berry phase due to competing ferromagnetic and antiferromagnetic interactions. Furthermore, we show that Cr<sub>1.25</sub>Te<sub>2</sub> exhibits a substantial anomalous Nernst effect, featuring a giant Nernst angle of ∼37% near <em>T</em><sub><em>C</em></sub> and a maximum Nernst thermoelectric coefficient of 0.52 μV/K. These results surpass those of conventional ferromagnets and other two-dimensional vdW materials, highlighting Cr<sub>1.25</sub>Te<sub>2</sub> as a promising candidate for advanced thermoelectric devices based on the Nernst effect.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"7 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101627","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of two-dimensional van der Waals (vdW) magnetic materials has propelled advancements in technological devices. The Nernst effect, which generates a transverse electric voltage in the presence of a longitudinal thermal gradient, shows great promise for thermoelectric applications. In this work, we report the electronic and thermoelectric transport properties of Cr1.25Te2, a layered self-intercalated vdW material which exhibits an antiferromagnetic ordering at TN ∼ 191 K followed by a ferromagnetic-like phase transition at TC ∼171 K. We observe a prominent topological Hall effect and topological Nernst effect between TC and TN, which is ascribable to non-coplanar spin textures inducing a real-space Berry phase due to competing ferromagnetic and antiferromagnetic interactions. Furthermore, we show that Cr1.25Te2 exhibits a substantial anomalous Nernst effect, featuring a giant Nernst angle of ∼37% near TC and a maximum Nernst thermoelectric coefficient of 0.52 μV/K. These results surpass those of conventional ferromagnets and other two-dimensional vdW materials, highlighting Cr1.25Te2 as a promising candidate for advanced thermoelectric devices based on the Nernst effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维范德华(vdW)磁性材料的发现推动了技术设备的进步。在存在纵向热梯度的情况下产生横向电压的恩斯特效应为热电应用带来了巨大的前景。在这项工作中,我们报告了 Cr1.25Te2 的电子和热电传输特性。Cr1.25Te2 是一种层状自迭代 vdW 材料,在 TN ∼ 191 K 时表现出反铁磁有序,随后在 TC ∼ 171 K 时出现铁磁样相变。我们观察到在 TC 和 TN 之间存在突出的拓扑霍尔效应和拓扑奈恩斯特效应,这可归因于非共面自旋纹理在铁磁和反铁磁相互作用的竞争下诱导出实空贝里相。此外,我们还发现,Cr1.25Te2 表现出巨大的反常诺恩特效应,在 TC 附近的巨大诺恩特角为 ∼37% ,最大诺恩特热电系数为 0.52 μV/K。这些结果超越了传统铁磁体和其他二维 vdW 材料,凸显了 Cr1.25Te2 作为基于 Nernst 效应的先进热电器件候选材料的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Corrigendum to <“Topological Materials for Near-Field Radiative Heat Transfer”> <[Materials Today Physics, Volume 46, August 2024, 101489]> API Phonons: Python Interfaces for Phonon Transport Modeling Hetero-structured construction of RGO nanosheets decorated by flower-like MoS2 toward the regulation of electromagnetic wave absorption performance Rapid Prediction of Phonon Density of States by Crystal Attention Graph Neural Network and High-Throughput Screening of Candidate Substrates for Wide Bandgap Electronic Cooling Insights into the Enhanced ORR Activity of FeN4-Embedded Graphene Through Interface Interactions with Metal Substrates: Electronic vs. Geometric Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1