{"title":"Self-Adhesive Elastic Conductive Ink with High Permeability and Low Diffusivity for Direct Printing of Universal Textile Electronics","authors":"Liming Zhu, Xinran Zhou, Jiwei Zhang, Yong Xia, Mengjie Wu, Yue Zhang, Zeren Lu, Weikang Li, Luyun Liu, Hao Liu, Jianyong Yu, Jiaqing Xiong","doi":"10.1021/acsnano.4c11291","DOIUrl":null,"url":null,"abstract":"Elastic conductive ink (ECI) can effectively balance the electromechanical properties of printed flexible electronics. It remains challenging to realize ECIs for direct printing on deformable porous substrates with complex textures, such as textiles, to form continuous and stable electrical paths. We engineered a self-adhesive ECI with high permeability and low diffusivity, achieving efficient electrode printing on a wide range of textiles with material and structure diversity. The ECI consists of a microphase separation-toughened elastomer (styrene–isoprene–styrene/ethyl vinyl acetate (SIS-EVA)) and a binary conductive filler. SIS-EVA provides a tough framework to protect silver flakes (AgFKs) and forms a ductile conductive path, which can be electrically compensated by liquid metal microspheres (LMMSs) upon dynamic deformation. The freestanding ECI conductor demonstrates a breaking strain of ∼1305.5% and a conductivity of ∼5322.7 S cm<sup>–1</sup>. The ECI can be universally printed on diversified textiles free of pretreatment, with high permeability (319.2 μm) and low diffusivity (6.2 μm), demonstrating a stable printing line width of ∼216 μm on knitted cotton textiles, while maintaining electrical stability after 200 stretching cycles with 50% strain. Printed electronic textiles with stretchability, high abrasion resistance, and machine washability are demonstrated for wearable applications such as fabric electrodes, capacitive sensors, and electrocardiograph monitoring.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"3 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11291","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Elastic conductive ink (ECI) can effectively balance the electromechanical properties of printed flexible electronics. It remains challenging to realize ECIs for direct printing on deformable porous substrates with complex textures, such as textiles, to form continuous and stable electrical paths. We engineered a self-adhesive ECI with high permeability and low diffusivity, achieving efficient electrode printing on a wide range of textiles with material and structure diversity. The ECI consists of a microphase separation-toughened elastomer (styrene–isoprene–styrene/ethyl vinyl acetate (SIS-EVA)) and a binary conductive filler. SIS-EVA provides a tough framework to protect silver flakes (AgFKs) and forms a ductile conductive path, which can be electrically compensated by liquid metal microspheres (LMMSs) upon dynamic deformation. The freestanding ECI conductor demonstrates a breaking strain of ∼1305.5% and a conductivity of ∼5322.7 S cm–1. The ECI can be universally printed on diversified textiles free of pretreatment, with high permeability (319.2 μm) and low diffusivity (6.2 μm), demonstrating a stable printing line width of ∼216 μm on knitted cotton textiles, while maintaining electrical stability after 200 stretching cycles with 50% strain. Printed electronic textiles with stretchability, high abrasion resistance, and machine washability are demonstrated for wearable applications such as fabric electrodes, capacitive sensors, and electrocardiograph monitoring.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.