Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-12-12 DOI:10.1111/nph.20343
Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira
{"title":"Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.","authors":"Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira","doi":"10.1111/nph.20343","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.</li>\n<li>Here, we examined leaf and EFN morphology and development of two <i>Passiflora</i> species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several <i>SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE</i> (<i>SPL</i>) transcription factors.</li>\n<li>Low levels of miR156 correlated with leaf maturation and EFN formation in <i>Passiflora edulis and P. cincinnata</i>. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both <i>Passiflora</i> species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in <i>P. cincinnata</i>. Transcriptome analysis of young leaf primordia revealed that miR156-targeted <i>SPLs</i> may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.</li>\n<li>Our work provides evidence that the miR156/<i>SPL</i> module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20343","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.
  • Here, we examined leaf and EFN morphology and development of two Passiflora species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factors.
  • Low levels of miR156 correlated with leaf maturation and EFN formation in Passiflora edulis and P. cincinnata. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both Passiflora species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in P. cincinnata. Transcriptome analysis of young leaf primordia revealed that miR156-targeted SPLs may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.
  • Our work provides evidence that the miR156/SPL module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems Two reductases complete steroidal glycoalkaloids biosynthesis in potato Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum At least two functions for BdMUTE during the development of stomatal complexes in Brachypodium distachyon MEDIATOR15 destabilizes DELLA protein to promote gibberellin‐mediated plant development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1