Influence mechanisms of porous aggregate morphology, maximum size and optimized gradation on ultra-high performance concrete with ferrochrome slag

Yuanyuan Zhu, Zhidan Rong, Qing Jiang, Jinyan Shi
{"title":"Influence mechanisms of porous aggregate morphology, maximum size and optimized gradation on ultra-high performance concrete with ferrochrome slag","authors":"Yuanyuan Zhu, Zhidan Rong, Qing Jiang, Jinyan Shi","doi":"10.1016/j.cemconcomp.2024.105890","DOIUrl":null,"url":null,"abstract":"Ferrochrome slag (FCS) is one of the main by-products generated from the smelting of ferrochrome alloy. Its utilization as aggregate can reduce the mining of natural aggregate and cost of ultra-high performance concrete (UHPC). The morphology of aggregate, maximum size (D<sub>max</sub>) and particle gradation are key factors that affect the properties of concrete. Herein, the morphology of FCS compared to river sand was quantitatively characterized. Aggregate gradation was optimized according to the MAA model. Influence mechanisms of aggregate morphology, D<sub>max</sub>, and optimized gradation on the properties of UHPC were clarified. The results indicated that large-size FCS above 2.36 mm had higher circularity and roughness, which was beneficial for enhancing the interface bonding and restraining shrinkage. Grading optimization improved the mechanical properties of UHPC (up to 14.1% at 7 days), interface hardness by 8.6% and reduced the autogenous shrinkage by 6.0%. This shrinkage was further reduced by 12.0% at larger sand-binder ratio of 1.4 due to the enhanced restraint capacity of compactly stacked aggregates. Plastic viscosity of fresh mixture increased with the decrease of D<sub>max</sub>, which resulted in a poor workability. Moreover, small-size FCS below 1.18 mm had less roughness and more needle-like particles, which was detrimental to the mechanical properties. The finer particles in FCS also accelerated the hydration process and led to a larger autogenous shrinkage. Thereby, it is not appropriate to adopt more small-sized porous aggregates in UHPC manufacturing. This study provides a theoretical basis for the mixing design and property improvement of UHPC with porous aggregate.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferrochrome slag (FCS) is one of the main by-products generated from the smelting of ferrochrome alloy. Its utilization as aggregate can reduce the mining of natural aggregate and cost of ultra-high performance concrete (UHPC). The morphology of aggregate, maximum size (Dmax) and particle gradation are key factors that affect the properties of concrete. Herein, the morphology of FCS compared to river sand was quantitatively characterized. Aggregate gradation was optimized according to the MAA model. Influence mechanisms of aggregate morphology, Dmax, and optimized gradation on the properties of UHPC were clarified. The results indicated that large-size FCS above 2.36 mm had higher circularity and roughness, which was beneficial for enhancing the interface bonding and restraining shrinkage. Grading optimization improved the mechanical properties of UHPC (up to 14.1% at 7 days), interface hardness by 8.6% and reduced the autogenous shrinkage by 6.0%. This shrinkage was further reduced by 12.0% at larger sand-binder ratio of 1.4 due to the enhanced restraint capacity of compactly stacked aggregates. Plastic viscosity of fresh mixture increased with the decrease of Dmax, which resulted in a poor workability. Moreover, small-size FCS below 1.18 mm had less roughness and more needle-like particles, which was detrimental to the mechanical properties. The finer particles in FCS also accelerated the hydration process and led to a larger autogenous shrinkage. Thereby, it is not appropriate to adopt more small-sized porous aggregates in UHPC manufacturing. This study provides a theoretical basis for the mixing design and property improvement of UHPC with porous aggregate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement Porous biochar for improving the CO2 uptake capacities and kinetics of concrete Microstructure transformation of MCM-41 modified cement paste subjected to thermal load and modelling of its pore size distribution New insights into the interaction between seawater and CO2-activated calcium silicate composites Mechanical Performance Enhancement of UHPC Via ITZ Improvement Using Graphene Oxide-Coated Steel Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1