New insights into the interaction between seawater and CO2-activated calcium silicate composites

Farzana Mustari Nishat, Ishrat Baki Borno, Adhora Tahsin, Warda Ashraf
{"title":"New insights into the interaction between seawater and CO2-activated calcium silicate composites","authors":"Farzana Mustari Nishat, Ishrat Baki Borno, Adhora Tahsin, Warda Ashraf","doi":"10.1016/j.cemconcomp.2025.105929","DOIUrl":null,"url":null,"abstract":"This article presents the investigation findings on the combined effect of seawater and carbonation curing on two types of binders – blended binder containing blast furnace slag (BFS) and laboratory synthesized pure β-C<sub>2</sub>S. Samples were prepared using freshwater and seawater as mixing water. After casting, the samples were exposed to accelerated CO<sub>2</sub> curing for 7 days and then exposed to seawater for up to 56 days. The results revealed that the use of seawater as mixing water has substantially different effects on the performances of β-C<sub>2</sub>S compared to blended cement. Specifically, the use of seawater as the mixing water resulted in a threefold increase in the amount of carbonates formation in β-C<sub>2</sub>S paste compared to the samples prepared by mixing with fresh water. The seawater mixed and CO<sub>2</sub> cured β-C<sub>2</sub>S paste samples showed continuous increase in strength even after extended exposure to seawater and reached up to 75 MPa strength, which is nearly 100% increase compared to the samples prepared with freshwater mixing. However, such drastic benefits of using seawater were not observed in the case of blended binders. For pure β-C<sub>2</sub>S, the presence of Mg ions along with slightly higher pH resulted in the formation of vaterite and Mg-calcite contributing to superior performances. Additionally, after exposure to seawater, the silica gel phase captured Mg from seawater to form M-S-H. On the hand, the presence of Al in blended cement led to the formation of layered double hydroxides, including hydrotalcite and hydrocalumite, which limited the benefits of using seawater. Additionally, the presence of Al also resulted in the formation of ettringite formation when exposed to seawater. Because of these effects, a slight reduction in strength was observed in case of carbonation cured blended cement after their exposure to seawater.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the investigation findings on the combined effect of seawater and carbonation curing on two types of binders – blended binder containing blast furnace slag (BFS) and laboratory synthesized pure β-C2S. Samples were prepared using freshwater and seawater as mixing water. After casting, the samples were exposed to accelerated CO2 curing for 7 days and then exposed to seawater for up to 56 days. The results revealed that the use of seawater as mixing water has substantially different effects on the performances of β-C2S compared to blended cement. Specifically, the use of seawater as the mixing water resulted in a threefold increase in the amount of carbonates formation in β-C2S paste compared to the samples prepared by mixing with fresh water. The seawater mixed and CO2 cured β-C2S paste samples showed continuous increase in strength even after extended exposure to seawater and reached up to 75 MPa strength, which is nearly 100% increase compared to the samples prepared with freshwater mixing. However, such drastic benefits of using seawater were not observed in the case of blended binders. For pure β-C2S, the presence of Mg ions along with slightly higher pH resulted in the formation of vaterite and Mg-calcite contributing to superior performances. Additionally, after exposure to seawater, the silica gel phase captured Mg from seawater to form M-S-H. On the hand, the presence of Al in blended cement led to the formation of layered double hydroxides, including hydrotalcite and hydrocalumite, which limited the benefits of using seawater. Additionally, the presence of Al also resulted in the formation of ettringite formation when exposed to seawater. Because of these effects, a slight reduction in strength was observed in case of carbonation cured blended cement after their exposure to seawater.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement Porous biochar for improving the CO2 uptake capacities and kinetics of concrete Microstructure transformation of MCM-41 modified cement paste subjected to thermal load and modelling of its pore size distribution New insights into the interaction between seawater and CO2-activated calcium silicate composites Mechanical Performance Enhancement of UHPC Via ITZ Improvement Using Graphene Oxide-Coated Steel Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1