{"title":"Screening of pure silica zeolites with high ethane/ethylene separation selectivity by simulations and experiments","authors":"Peixin Zhang, Jianbo Hu, Dengzhuo Zhou, Xiaofei Lu, Lifeng Yang, Liyuan Chen, Xian Suo, Xili Cui, Huabin Xing","doi":"10.1002/aic.18676","DOIUrl":null,"url":null,"abstract":"The advancement of ethane (C<sub>2</sub>H<sub>6</sub>)-selective materials offers the potential for developing energy-efficient adsorptive separation processes to obtain high-purity ethylene (C<sub>2</sub>H<sub>4</sub>) directly. However, these materials still suffer challenges of low selectivity, high cost, and poor stability. Herein, we presented a commercially scalable and stable MFI topology zeolite material (TS-1) with excellent ideal adsorption solution theory (IAST) selectivity (2.07) and separation potential (0.64 mmol g<sup>−1</sup>). Polymer-grade ethylene (99.9%) could be afforded with the productivity of 11.5 L kg<sup>−1</sup> through the adsorption column packed with TS-1 material. Additionally, pure silica zeolite with DOH topology with excellent IAST selectivity (2.93) and separation potential (1.64 mmol g<sup>−1</sup>) was discovered by high-throughput screening via the combination of experiments and simulations. These findings highlight that pure silica zeolites hold promise as C<sub>2</sub>H<sub>6</sub>-selective adsorbents for large-scale implementation for one-step C<sub>2</sub>H<sub>4</sub> purification.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"233 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18676","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of ethane (C2H6)-selective materials offers the potential for developing energy-efficient adsorptive separation processes to obtain high-purity ethylene (C2H4) directly. However, these materials still suffer challenges of low selectivity, high cost, and poor stability. Herein, we presented a commercially scalable and stable MFI topology zeolite material (TS-1) with excellent ideal adsorption solution theory (IAST) selectivity (2.07) and separation potential (0.64 mmol g−1). Polymer-grade ethylene (99.9%) could be afforded with the productivity of 11.5 L kg−1 through the adsorption column packed with TS-1 material. Additionally, pure silica zeolite with DOH topology with excellent IAST selectivity (2.93) and separation potential (1.64 mmol g−1) was discovered by high-throughput screening via the combination of experiments and simulations. These findings highlight that pure silica zeolites hold promise as C2H6-selective adsorbents for large-scale implementation for one-step C2H4 purification.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.