Jingjing Guo, Jialin Tuo, Jiangtao Sun, Zhuozhou Li, Xiaoyan Guo, Yanyan Chen, Rong Cai, Jing Zhong, Lijun Xu
{"title":"Stretchable Multimodal Photonic Sensor for Wearable Multiparameter Health Monitoring","authors":"Jingjing Guo, Jialin Tuo, Jiangtao Sun, Zhuozhou Li, Xiaoyan Guo, Yanyan Chen, Rong Cai, Jing Zhong, Lijun Xu","doi":"10.1002/adma.202412322","DOIUrl":null,"url":null,"abstract":"Stretchable sensors that can conformally interface with the skins for wearable and real-time monitoring of skin deformations, temperature, and sweat biomarkers offer critical insights for early disease prediction and diagnosis. Integration of multiple modalities in a single stretchable sensor to simultaneously detect these stimuli would provide a more comprehensive understanding of human physiology, which, however, has yet to be achieved. Here, this work reports, for the first time, a stretchable multimodal photonic sensor capable of simultaneously detecting and discriminating strain deformations, temperature, and sweat pH. The multimodal sensing abilities are enabled by realization of multiple sensing mechanisms in a hydrogel-coated polydimethylsiloxane (PDMS) optical fiber (HPOF), featured with high flexibility, stretchability, and biocompatibility. The integrated mechanisms are designed to operate at distinct wavelengths to facilitate stimuli decoupling and employ a ratiometric detection strategy for improved robustness and accuracy. To simplify sensor interrogation, spectrally-resolved multiband emissions are generated upon the excitation of a single-wavelength laser, utilizing upconversion luminescence (UCL) and radiative energy transfer (RET) processes. As proof of concept, this work demonstrates the feasibility of simultaneous monitoring of the heartbeat, respiration, body temperature, and sweat pH of a person in real-time, with only a single sensor.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412322","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable sensors that can conformally interface with the skins for wearable and real-time monitoring of skin deformations, temperature, and sweat biomarkers offer critical insights for early disease prediction and diagnosis. Integration of multiple modalities in a single stretchable sensor to simultaneously detect these stimuli would provide a more comprehensive understanding of human physiology, which, however, has yet to be achieved. Here, this work reports, for the first time, a stretchable multimodal photonic sensor capable of simultaneously detecting and discriminating strain deformations, temperature, and sweat pH. The multimodal sensing abilities are enabled by realization of multiple sensing mechanisms in a hydrogel-coated polydimethylsiloxane (PDMS) optical fiber (HPOF), featured with high flexibility, stretchability, and biocompatibility. The integrated mechanisms are designed to operate at distinct wavelengths to facilitate stimuli decoupling and employ a ratiometric detection strategy for improved robustness and accuracy. To simplify sensor interrogation, spectrally-resolved multiband emissions are generated upon the excitation of a single-wavelength laser, utilizing upconversion luminescence (UCL) and radiative energy transfer (RET) processes. As proof of concept, this work demonstrates the feasibility of simultaneous monitoring of the heartbeat, respiration, body temperature, and sweat pH of a person in real-time, with only a single sensor.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.