Bifidobacterium longum subsp. longum relieves loperamide hydrochloride-induced constipation in mice by enhancing bile acid dissociation.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2024-12-13 DOI:10.1039/d4fo04660a
Chenyue Zhang, Linlin Wang, Xiaoming Liu, Gang Wang, Jianxin Zhao, Wei Chen
{"title":"<i>Bifidobacterium longum</i> subsp. <i>longum</i> relieves loperamide hydrochloride-induced constipation in mice by enhancing bile acid dissociation.","authors":"Chenyue Zhang, Linlin Wang, Xiaoming Liu, Gang Wang, Jianxin Zhao, Wei Chen","doi":"10.1039/d4fo04660a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bifidobacterium</i> species are known for their efficacy in alleviating constipation. This study aimed to compare the constipation-relieving effects of different <i>Bifidobacterium</i> species (<i>Bifidobacterium longum</i> subsp. <i>longum</i>, <i>Bifidobacterium bifidum</i>, <i>Bifidobacterium animalis</i>, <i>Bifidobacterium breve</i>, <i>Bifidobacterium longum</i> subsp. <i>infantis</i>, and <i>Bifidobacterium adolescentis</i>) and to explore the underlying mechanisms from both the bacterial and host perspectives. We evaluated six <i>Bifidobacterium</i> species for their physiological properties, including growth rate, oligosaccharide utilization, osmotic pressure resistance, cell adhesion, and bile acid dissociation capability. Mice with severe constipation induced by loperamide hydrochloride were treated with these bacteria at a density of 10<sup>9</sup> CFU per mL for 17 days. Gastrointestinal indices such as fecal water content, time to first black stool defecation, and small intestine propulsion rate were measured to assess constipation relief. Microbiome and metabolome (bile acid and tryptophan) analyses were conducted to elucidate the differences in constipation relief among the species. Our results demonstrated that <i>Bifidobacterium longum</i> subsp. <i>longum</i> exhibited superior physiological traits, including rapid growth, extensive oligosaccharide utilization, and high bile salt dissociation capacity. Notably, only <i>Bifidobacterium longum</i> subsp. <i>longum</i> significantly ameliorated constipation symptoms in the mouse model. Furthermore, this strain markedly restored bile acid and short-chain fatty acid levels in the intestines of constipated mice and altered the composition of the intestinal microbiota. These findings suggest that the enhanced efficacy of <i>Bifidobacterium longum</i> subsp. <i>longum</i> in relieving constipation is associated with its ability to modulate intestinal physiology and microbiota structure and metabolism.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04660a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bifidobacterium species are known for their efficacy in alleviating constipation. This study aimed to compare the constipation-relieving effects of different Bifidobacterium species (Bifidobacterium longum subsp. longum, Bifidobacterium bifidum, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium longum subsp. infantis, and Bifidobacterium adolescentis) and to explore the underlying mechanisms from both the bacterial and host perspectives. We evaluated six Bifidobacterium species for their physiological properties, including growth rate, oligosaccharide utilization, osmotic pressure resistance, cell adhesion, and bile acid dissociation capability. Mice with severe constipation induced by loperamide hydrochloride were treated with these bacteria at a density of 109 CFU per mL for 17 days. Gastrointestinal indices such as fecal water content, time to first black stool defecation, and small intestine propulsion rate were measured to assess constipation relief. Microbiome and metabolome (bile acid and tryptophan) analyses were conducted to elucidate the differences in constipation relief among the species. Our results demonstrated that Bifidobacterium longum subsp. longum exhibited superior physiological traits, including rapid growth, extensive oligosaccharide utilization, and high bile salt dissociation capacity. Notably, only Bifidobacterium longum subsp. longum significantly ameliorated constipation symptoms in the mouse model. Furthermore, this strain markedly restored bile acid and short-chain fatty acid levels in the intestines of constipated mice and altered the composition of the intestinal microbiota. These findings suggest that the enhanced efficacy of Bifidobacterium longum subsp. longum in relieving constipation is associated with its ability to modulate intestinal physiology and microbiota structure and metabolism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular injury through the Keap1/Nrf2 pathway. Anthocyanin-rich black wheat as a functional food for managing type 2 diabetes mellitus: a study on high fat diet-streptozotocin-induced diabetic rats. Impact of astaxanthin on the capacity of gut microbiota to produce tryptophan catabolites. Bifidobacterium bifidum CCFM1359 alleviates intestinal motility disorders through the BDNF-TrkB pathway. Composition of linear and branched short-chain fatty acids in human milk and newborn feces: influence of perinatal and maternal factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1