Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2024-12-13 DOI:10.1111/mec.17626
Gabriela M Quinlan, Heather M Hines, Christina M Grozinger
{"title":"Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.","authors":"Gabriela M Quinlan, Heather M Hines, Christina M Grozinger","doi":"10.1111/mec.17626","DOIUrl":null,"url":null,"abstract":"<p><p>Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens. In this study, we identify biomarkers of bumble bee (Bombus impatiens) responses to key stressors by first subjecting bees to various short-term stressors (cold, heat, nutrition and pathogen challenge) in a laboratory setting and assessing their transcriptome responses. Using random forest classification on this whole transcriptome data, we were able to discriminate each stressor. Our best model (tissue-specific model trained on a subset of important genes) correctly predicted known stressors with 92% accuracy. We then applied this random forest model to wild-caught bumble bees sampled across a heatwave event at two sites in central Pennsylvania, US, expected to differ in baseline temperature and floral resource availability. Transcriptomes of bees sampled during the heat wave's peak showed signatures of heat stress, while bees collected in the relatively cooler morning periods showed signatures of starvation and cold stress. We failed to pick up on signals of heat stress shortly after the heatwave, suggesting this set of biomarkers is more useful for identifying acute stressors than long-term monitoring of chronic, landscape-level stressors. We highlight future directions to fine-tune landscape transcriptomics towards the development of better stress biomarkers that can be used both for conservation and improving understanding of stressor impacts on bees.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17626"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17626","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens. In this study, we identify biomarkers of bumble bee (Bombus impatiens) responses to key stressors by first subjecting bees to various short-term stressors (cold, heat, nutrition and pathogen challenge) in a laboratory setting and assessing their transcriptome responses. Using random forest classification on this whole transcriptome data, we were able to discriminate each stressor. Our best model (tissue-specific model trained on a subset of important genes) correctly predicted known stressors with 92% accuracy. We then applied this random forest model to wild-caught bumble bees sampled across a heatwave event at two sites in central Pennsylvania, US, expected to differ in baseline temperature and floral resource availability. Transcriptomes of bees sampled during the heat wave's peak showed signatures of heat stress, while bees collected in the relatively cooler morning periods showed signatures of starvation and cold stress. We failed to pick up on signals of heat stress shortly after the heatwave, suggesting this set of biomarkers is more useful for identifying acute stressors than long-term monitoring of chronic, landscape-level stressors. We highlight future directions to fine-tune landscape transcriptomics towards the development of better stress biomarkers that can be used both for conservation and improving understanding of stressor impacts on bees.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多种压力的转录特征保护熊蜂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
Editorial 2025. Genetic Diversity and Ecogeographical Niche Overlap Among Hybridising Ox-Eye Daisies (Leucanthemum, Asteraceae) in the Carpathian Mountains: The Impact of Anthropogenic Disturbances. Field Reduction of Ectomycorrhizal Fungi Has Cascading Effects on Soil Microbial Communities and Reduces the Abundance of Ectomycorrhizal Symbiotic Bacteria. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina. 'Re-Wilding' an Animal Model With Microbiota Shifts Immunity and Stress Gene Expression During Infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1