Circadian Control of Protein Synthesis

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY BioEssays Pub Date : 2024-12-12 DOI:10.1002/bies.202300158
Nathan R. James, John S. O'Neill
{"title":"Circadian Control of Protein Synthesis","authors":"Nathan R. James,&nbsp;John S. O'Neill","doi":"10.1002/bies.202300158","DOIUrl":null,"url":null,"abstract":"<p>Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization—and of circadian rhythmicity in general—is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202300158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bies.202300158","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization—and of circadian rhythmicity in general—is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质合成的昼夜节律控制。
在大多数哺乳动物细胞中,蛋白质合成速率和特异性的日常节律是通过细胞自主昼夜节律调节和系统提示的日常周期之间的相互作用而发生的。然而,一个典型细胞的整体蛋白质含量在24小时内几乎没有变化。对于大多数蛋白质,翻译似乎与蛋白质降解协调,产生蛋白质组更新的阶段,最大限度地提高能量效率,同时在整个太阳周期内广泛保持蛋白质稳态。我们认为,这种时间区隔化(以及一般的昼夜节律性)的主要功能是优化蛋白质合成和相关过程(如复杂组装)的能量效率。我们进一步提出,大部分这种时间区隔化是在翻译起始水平上实现的,因此翻译机制在不同的翻译机制之间交替,每种翻译机制都使用不同的磷酸化蛋白工具箱来优先识别和翻译不同类别的mRNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioEssays
BioEssays 生物-生化与分子生物学
CiteScore
7.30
自引率
2.50%
发文量
167
审稿时长
4-8 weeks
期刊介绍: molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.
期刊最新文献
AAV Genome Topology Decides ITR Secondary Structure. Phosphoregulation of Microtubule Assembly and Disassembly for Phragmoplast Expansion During Plant Cytokinesis. Environmental and Their Disruption of Integrin Signaling in Lipid Rafts. The LAM Is Not Enough-An Idea to Watch Regarding Adipose Tissue Macrophages and Their Disease Relevance: Why Lipid-Associated Macrophage (LAM) Accumulation in Adipose Tissue Is a Systems Biology Problem. Gene Duplication and Alternative Splicing as Evolutionary Drivers of Proteome Specialization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1