A tutorial on pharmacometric Markov models

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY CPT: Pharmacometrics & Systems Pharmacology Pub Date : 2024-12-13 DOI:10.1002/psp4.13278
Qing Xi Ooi, Elodie Plan, Martin Bergstrand
{"title":"A tutorial on pharmacometric Markov models","authors":"Qing Xi Ooi,&nbsp;Elodie Plan,&nbsp;Martin Bergstrand","doi":"10.1002/psp4.13278","DOIUrl":null,"url":null,"abstract":"<p>The Markov chain is a stochastic process in which the future value of a variable is conditionally independent of the past, given its present value. Data with Markovian features are characterized by: frequent observations relative to the expected changes in values, many consecutive same-category or similar-value observations at the individual level, and a positive correlation observed between the current and previous values for that variable. In drug development and clinical settings, the data available commonly present Markovian features and are increasingly often modeled using Markov elements or dedicated Markov models. This tutorial presents the main characteristics, evaluations, and applications of various Markov modeling approaches including the discrete-time Markov models (DTMM), continuous-time Markov models (CTMM), hidden Markov models, and item-response theory model with Markov sub-models. The tutorial has a specific emphasis on the use of DTMM and CTMM for modeling ordered-categorical data with Markovian features. Although the main body of this tutorial is written in a software-neutral manner, annotated NONMEM code for all key Markov models is included in the Supplementary Information.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":"14 2","pages":"197-216"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13278","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.13278","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The Markov chain is a stochastic process in which the future value of a variable is conditionally independent of the past, given its present value. Data with Markovian features are characterized by: frequent observations relative to the expected changes in values, many consecutive same-category or similar-value observations at the individual level, and a positive correlation observed between the current and previous values for that variable. In drug development and clinical settings, the data available commonly present Markovian features and are increasingly often modeled using Markov elements or dedicated Markov models. This tutorial presents the main characteristics, evaluations, and applications of various Markov modeling approaches including the discrete-time Markov models (DTMM), continuous-time Markov models (CTMM), hidden Markov models, and item-response theory model with Markov sub-models. The tutorial has a specific emphasis on the use of DTMM and CTMM for modeling ordered-categorical data with Markovian features. Although the main body of this tutorial is written in a software-neutral manner, annotated NONMEM code for all key Markov models is included in the Supplementary Information.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于药物计量学马尔可夫模型的教程。
马尔可夫链是一个随机过程,在这个过程中,给定一个变量的现值,它的未来值与过去值有条件地无关。具有马尔可夫特征的数据具有以下特征:相对于预期值变化的频繁观测,在个体水平上有许多连续的同类或相似值观测,以及该变量的当前值和先前值之间观察到的正相关。在药物开发和临床环境中,可用的数据通常呈现马尔可夫特征,并且越来越多地使用马尔可夫元素或专用马尔可夫模型进行建模。本教程介绍了各种马尔可夫建模方法的主要特点、评价和应用,包括离散时间马尔可夫模型(DTMM)、连续时间马尔可夫模型(CTMM)、隐马尔可夫模型和带有马尔可夫子模型的项目反应理论模型。本教程特别强调使用DTMM和CTMM对具有马尔可夫特征的有序分类数据建模。尽管本教程的主体是以一种与软件无关的方式编写的,但所有关键马尔可夫模型的注释NONMEM代码都包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
期刊最新文献
Building Hybrid Pharmacometric-Machine Learning Models in Oncology Drug Development: Current State and Recommendations. Characterizing Apixaban Pharmacokinetics Through Physiologically-Based Pharmacokinetic Modeling: Critical Role of Biliary Secretion and Enterohepatic Circulation in Humans. Issue Information Beyond the Michaelis-Menten: Evaluation of a tQSSA-Based IVIVE Approach for Predicting In Vivo Intrinsic Clearance From Hepatocyte Assays. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1