Transposable element activity captures human pluripotent cell states.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2024-12-12 DOI:10.1038/s44319-024-00343-y
Florencia Levin-Ferreyra, Srikanth Kodali, Yingzhi Cui, Alison R S Pashos, Patrizia Pessina, Justin Brumbaugh, Bruno Di Stefano
{"title":"Transposable element activity captures human pluripotent cell states.","authors":"Florencia Levin-Ferreyra, Srikanth Kodali, Yingzhi Cui, Alison R S Pashos, Patrizia Pessina, Justin Brumbaugh, Bruno Di Stefano","doi":"10.1038/s44319-024-00343-y","DOIUrl":null,"url":null,"abstract":"<p><p>Human pluripotent stem cells (hPSCs) exist in multiple, transcriptionally distinct states and serve as powerful models for studying human development. Despite their significance, the molecular determinants and pathways governing these pluripotent states remain incompletely understood. Here, we demonstrate that transposable elements act as sensitive indicators of distinct pluripotent cell states. We engineered hPSCs with fluorescent reporters to capture the temporal expression dynamics of two state-specific transposable elements, LTR5_Hs, and MER51B. This dual reporter system enables real-time monitoring and isolation of stem cells transitioning from naïve to primed pluripotency and further towards differentiation, serving as a more accurate readout of pluripotency states compared to conventional systems. Unexpectedly, we identified a rare, metastable cell population within primed hPSCs, marked by transcripts related to preimplantation embryo development and which is associated with a DNA damage response. Moreover, our system establishes the chromatin factor NSD1 and the RNA-binding protein FUS as potent molecular safeguards of primed pluripotency. Our study introduces a novel system for investigating cellular potency and provides key insights into the regulation of embryonic development.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00343-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human pluripotent stem cells (hPSCs) exist in multiple, transcriptionally distinct states and serve as powerful models for studying human development. Despite their significance, the molecular determinants and pathways governing these pluripotent states remain incompletely understood. Here, we demonstrate that transposable elements act as sensitive indicators of distinct pluripotent cell states. We engineered hPSCs with fluorescent reporters to capture the temporal expression dynamics of two state-specific transposable elements, LTR5_Hs, and MER51B. This dual reporter system enables real-time monitoring and isolation of stem cells transitioning from naïve to primed pluripotency and further towards differentiation, serving as a more accurate readout of pluripotency states compared to conventional systems. Unexpectedly, we identified a rare, metastable cell population within primed hPSCs, marked by transcripts related to preimplantation embryo development and which is associated with a DNA damage response. Moreover, our system establishes the chromatin factor NSD1 and the RNA-binding protein FUS as potent molecular safeguards of primed pluripotency. Our study introduces a novel system for investigating cellular potency and provides key insights into the regulation of embryonic development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转座因子活性捕获人类多能细胞状态。
人类多能干细胞(hPSCs)存在于多种转录不同的状态,是研究人类发育的有力模型。尽管它们具有重要意义,但控制这些多能状态的分子决定因素和途径仍然不完全清楚。在这里,我们证明了转座因子作为不同多能细胞状态的敏感指标。我们利用荧光报告器对hPSCs进行了改造,以捕捉两种状态特异性转座因子LTR5_Hs和MER51B的时间表达动态。这种双报告系统能够实时监测和分离干细胞从naïve到引物多能性并进一步向分化的转变,与传统系统相比,它可以更准确地读取多能性状态。出乎意料的是,我们在引物的hPSCs中发现了一种罕见的亚稳态细胞群,其特征是与着床前胚胎发育相关的转录本,并与DNA损伤反应相关。此外,我们的系统建立了染色质因子NSD1和rna结合蛋白FUS作为引物多能性的有效分子保障。我们的研究引入了一种新的系统来研究细胞潜能,并为胚胎发育的调控提供了关键的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice. Rapid human oogonia-like cell specification via transcription factor-directed differentiation. High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors. The controls that got out of control : How failed control experiments paved the way to transformative discoveries. Male sex determination maintains proteostasis and extends lifespan of daf-18/PTEN deficient C. elegans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1