Congenital heart defects differ following left versus right avian cardiac neural crest ablation.

IF 2.5 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Developmental biology Pub Date : 2024-12-10 DOI:10.1016/j.ydbio.2024.12.003
Tatiana Solovieva, Marianne E Bronner
{"title":"Congenital heart defects differ following left versus right avian cardiac neural crest ablation.","authors":"Tatiana Solovieva, Marianne E Bronner","doi":"10.1016/j.ydbio.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>The cardiac neural crest is critical for the normal development of the heart, as its surgical ablation in the chick recapitulates common human congenital heart defects such as 'Common Arterial Trunk' and 'Double Outlet Right Ventricle' (DORV). While left-right asymmetry is known to be important for heart development, little is known about potential asymmetric differences between right and left cardiac neural folds with respect to heart development. Here, through surgical ablation of either left or right cardiac neural crest, we find that right ablation results in more varied and more severe heart defects. Embryos with Common Arterial Trunk and with missing arteries occurred in right-ablated embryos but were not observed in left-ablated embryos; moreover, embryos with DORV and with misalignment of the arteries were more prevalent following right versus left cardiac crest ablation. In addition, survival of right-ablated embryos was lower than left-ablated embryos. Together, these data raise the intriguing possibility that there may be differences in left versus right cardiac neural crest during heart development.</p>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":" ","pages":"30-37"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ydbio.2024.12.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cardiac neural crest is critical for the normal development of the heart, as its surgical ablation in the chick recapitulates common human congenital heart defects such as 'Common Arterial Trunk' and 'Double Outlet Right Ventricle' (DORV). While left-right asymmetry is known to be important for heart development, little is known about potential asymmetric differences between right and left cardiac neural folds with respect to heart development. Here, through surgical ablation of either left or right cardiac neural crest, we find that right ablation results in more varied and more severe heart defects. Embryos with Common Arterial Trunk and with missing arteries occurred in right-ablated embryos but were not observed in left-ablated embryos; moreover, embryos with DORV and with misalignment of the arteries were more prevalent following right versus left cardiac crest ablation. In addition, survival of right-ablated embryos was lower than left-ablated embryos. Together, these data raise the intriguing possibility that there may be differences in left versus right cardiac neural crest during heart development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
左侧和右侧禽类心脏神经嵴消融术后的先天性心脏缺陷不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
期刊最新文献
Spatiotemporal control of cell ablation using Ronidazole with Nitroreductase in Drosophila. Introduction to "Research that Transformed Developmental Biology". Teaching Students to Effectively Evaluate Scientific Evidence and Advocate for Research in the Context of Autism Spectrum Disorder and the Neurodiversity Movement. Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea. A chitin-binding domain-containing gene is essential for shell development in the mollusc Tritia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1