Effect of Acanthamoeba Spp. Cell-Free Supernatants on Some Bacterial Pathogens.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY Journal of Basic Microbiology Pub Date : 2024-12-12 DOI:10.1002/jobm.202400537
Şevval Maral Özcan Aykol, Zuhal Zeybek, Yavuzhan Kayabaş, Serranur Çevikli, Nihan Berfin Keskin, Münise Hilal Kahraman, Hümeyra Çaliş
{"title":"Effect of Acanthamoeba Spp. Cell-Free Supernatants on Some Bacterial Pathogens.","authors":"Şevval Maral Özcan Aykol, Zuhal Zeybek, Yavuzhan Kayabaş, Serranur Çevikli, Nihan Berfin Keskin, Münise Hilal Kahraman, Hümeyra Çaliş","doi":"10.1002/jobm.202400537","DOIUrl":null,"url":null,"abstract":"<p><p>The fact that free-living amoebae of the genus Acanthamoeba can live in many different environments causes these protozoa to have different interactions with other microorganisms. Investigation of Acanthamoeba-pathogenic bacteria interaction is important for the discovery of new antibacterial agents that can be used against pathogenic bacteria. In this study, it was aimed to investigate the antibacterial effect of cell-free supernatants obtained from Acanthamoeba against some pathogenic bacteria. One standard strain (Acanthamoeba castellanii ATCC 50373) and one environmental strain (B1) of the genus Acanthamoeba were used in the study. Cell-free supernatants were obtained by centrifuging the axenic cultures (3000 rpm, 5 min) and passing through a sterile filter with a pore diameter of 0.22 µm. The antibacterial effect of cell-free supernatants against five different pathogenic bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Typhi, and Salmonella enterica) was investigated by colony counting method. As a result of the study, it was determined that the standard Acanthamoeba cell-free supernatant showed the highest antibacterial effect against E. faecalis (75.79%), while B1 cell-free supernatant showed the highest antibacterial effect against K. pneumoniae (8.5%). The content of the tested Acanthamoeba cell-free supernatants was analyzed by gas chromatography/mass spectrometry in our previous study and was also found to contain major compounds with antibacterial properties. Therefore, it is thought that the metabolites produced by Acanthamoeba can be used as an alternative to existing antimicrobial drugs in the fight against infections caused by some important pathogenic bacteria.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400537"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400537","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fact that free-living amoebae of the genus Acanthamoeba can live in many different environments causes these protozoa to have different interactions with other microorganisms. Investigation of Acanthamoeba-pathogenic bacteria interaction is important for the discovery of new antibacterial agents that can be used against pathogenic bacteria. In this study, it was aimed to investigate the antibacterial effect of cell-free supernatants obtained from Acanthamoeba against some pathogenic bacteria. One standard strain (Acanthamoeba castellanii ATCC 50373) and one environmental strain (B1) of the genus Acanthamoeba were used in the study. Cell-free supernatants were obtained by centrifuging the axenic cultures (3000 rpm, 5 min) and passing through a sterile filter with a pore diameter of 0.22 µm. The antibacterial effect of cell-free supernatants against five different pathogenic bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Typhi, and Salmonella enterica) was investigated by colony counting method. As a result of the study, it was determined that the standard Acanthamoeba cell-free supernatant showed the highest antibacterial effect against E. faecalis (75.79%), while B1 cell-free supernatant showed the highest antibacterial effect against K. pneumoniae (8.5%). The content of the tested Acanthamoeba cell-free supernatants was analyzed by gas chromatography/mass spectrometry in our previous study and was also found to contain major compounds with antibacterial properties. Therefore, it is thought that the metabolites produced by Acanthamoeba can be used as an alternative to existing antimicrobial drugs in the fight against infections caused by some important pathogenic bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acanthamoeba Spp.无细胞上清液对某些细菌病原体的影响
由于棘阿米巴属的自由生活阿米巴虫可以生活在许多不同的环境中,因此这些原生动物与其他微生物的相互作用各不相同。研究棘阿米巴与致病菌之间的相互作用对于发现可用于抗击致病菌的新抗菌剂非常重要。本研究旨在调查从棘阿米巴获得的无细胞上清液对一些致病菌的抗菌效果。研究中使用了棘阿米巴属的一个标准菌株(Acanthamoeba castellanii ATCC 50373)和一个环境菌株(B1)。将轴向培养物离心(3000 转/分,5 分钟)并通过孔径为 0.22 微米的无菌过滤器,获得无细胞上清液。通过菌落计数法研究了无细胞上清液对五种不同致病菌(鲍曼不动杆菌、肺炎克雷伯菌、粪肠球菌、伤寒沙门氏菌和肠炎沙门氏菌)的抗菌效果。研究结果表明,标准的无棘阿米巴细胞上清液对粪肠球菌的抗菌效果最高(75.79%),而 B1 无细胞上清液对肺炎克雷伯菌的抗菌效果最高(8.5%)。我们在之前的研究中通过气相色谱/质谱法分析了测试的无棘阿米巴细胞上清液的含量,发现其中也含有具有抗菌特性的主要化合物。因此,我们认为棘阿米巴虫产生的代谢物可作为现有抗菌药物的替代品,用于抗击一些重要致病菌引起的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
期刊最新文献
Green Synthesis of Silver-Doped ZnO Nanoparticles From Adiantum venustum D. Don (Pteridaceae): Antimicrobial and Antioxidant Evaluation. Recent Advancements and Strategies for Omega-3 Fatty Acid Production in Yeast. Autophagy Activated by Atg1 Interacts With Atg9 Promotes Biofilm Formation and Resistance of Candida albicans. The Discovery of Novel ER-Localized Cellobiose Transporters Involved in Cellulase Biosynthesis in Trichoderma reesei. Biodegradation of Organophosphorus Insecticides by Bacillus Species Isolated From Soil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1