Muhammad Amjad, Rukhshinda Kousar, Muhammad Asif Naeem, Muhammad Imran, Muhammad Nadeem, Ghulam Abbas, Muhammad Shafique Khalid, Saeed Ahmad Qaisrani, Sajida Azhar, Behzad Murtaza
{"title":"An interplay of salt and Ni stress on contrasting tomato (<i>Solanum lycopersicum</i> L.) genotypes: a physiological and biochemical insight.","authors":"Muhammad Amjad, Rukhshinda Kousar, Muhammad Asif Naeem, Muhammad Imran, Muhammad Nadeem, Ghulam Abbas, Muhammad Shafique Khalid, Saeed Ahmad Qaisrani, Sajida Azhar, Behzad Murtaza","doi":"10.1080/15226514.2024.2438772","DOIUrl":null,"url":null,"abstract":"<p><p>The concurrently occurring multiple abiotic stresses like salinity and heavy metals (Nickel) pose a serious threat to plant survival and food security worldwide, especially in the face of climate change. Therefore, it is imperative to continuously test and study the plant's physiological changes under combinations of abiotic stresses to ensure sustainability and food security. An experiment was conducted to study the interactive effects of salinity (0, 7.5, and 15 dS m<sup>-1</sup>) and Ni toxicity (0, 10, 20, and 40 mg kg<sup>-1</sup>) on a tolerant (Naqeeb) and a sensitive (Nadir) <i>Solanum lycopersicum</i> L. physiology and fruit quality in the soil. At maturity (50% fruit ripening), the plant growth and physiological characteristics were measured, revealing that the tolerant genotype exhibited the higher values for plant height, dry weight, potassium, membrane stability index (MSI), and antioxidant enzymes (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APX, and glutathione reductase; GR). Additionally, it showed enhancement in fruit yield, size, and quality. Conversely, the tolerant genotypes showed a lower reduction in terms of plant height (25.4%) and plant dry weight (41.9%) compared to sensitive genotype (30.1 and 51.4%, respectively). Additionally, the tolerant genotype demonstrated lower values of Ni and Na<sup>+</sup> concentration and MDA accumulation under the combined stress of salt and Ni, compared to the sensitive genotype. Furthermore, the study indicated that Ni at a concentration of 10 mg kg<sup>-1</sup> significantly influenced tomato plant growth by enhancing its nutritional efficiency and competing with Na<sup>+</sup>. However, Ni at concentrations of 20 and 40 mg kg<sup>-1</sup> had toxic effects on the plants, leading to a decrease in plant growth and physiological processes. Moreover, a negative relationship was observed between Ni uptake and Na<sup>+</sup> uptake, while a positive relationship was observed between Ni and K<sup>+</sup> uptake. Overall, this study provides valuable insights into the interaction between salinity, heavy metal toxicity, and tomato plant physiology, contributing to the development of sustainable agricultural practices.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-13"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2438772","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The concurrently occurring multiple abiotic stresses like salinity and heavy metals (Nickel) pose a serious threat to plant survival and food security worldwide, especially in the face of climate change. Therefore, it is imperative to continuously test and study the plant's physiological changes under combinations of abiotic stresses to ensure sustainability and food security. An experiment was conducted to study the interactive effects of salinity (0, 7.5, and 15 dS m-1) and Ni toxicity (0, 10, 20, and 40 mg kg-1) on a tolerant (Naqeeb) and a sensitive (Nadir) Solanum lycopersicum L. physiology and fruit quality in the soil. At maturity (50% fruit ripening), the plant growth and physiological characteristics were measured, revealing that the tolerant genotype exhibited the higher values for plant height, dry weight, potassium, membrane stability index (MSI), and antioxidant enzymes (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APX, and glutathione reductase; GR). Additionally, it showed enhancement in fruit yield, size, and quality. Conversely, the tolerant genotypes showed a lower reduction in terms of plant height (25.4%) and plant dry weight (41.9%) compared to sensitive genotype (30.1 and 51.4%, respectively). Additionally, the tolerant genotype demonstrated lower values of Ni and Na+ concentration and MDA accumulation under the combined stress of salt and Ni, compared to the sensitive genotype. Furthermore, the study indicated that Ni at a concentration of 10 mg kg-1 significantly influenced tomato plant growth by enhancing its nutritional efficiency and competing with Na+. However, Ni at concentrations of 20 and 40 mg kg-1 had toxic effects on the plants, leading to a decrease in plant growth and physiological processes. Moreover, a negative relationship was observed between Ni uptake and Na+ uptake, while a positive relationship was observed between Ni and K+ uptake. Overall, this study provides valuable insights into the interaction between salinity, heavy metal toxicity, and tomato plant physiology, contributing to the development of sustainable agricultural practices.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.