{"title":"Pleiotrophin Prevents H<sub>2</sub>O<sub>2</sub>-Induced Senescence of Dental Pulp Stem Cells.","authors":"Chang Liu, Wanzhen Lei, Lili Zhang, Chen Zhang, Runtao Gao, Luyuan Jin","doi":"10.1111/joor.13918","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dental pulp stem cells (DPSCs) are widely used in research on dental tissue regeneration and systemic disease treatment. However, the oxidative microenvironment often causes cellular senescence, leading to decreased function. Our previous study demonstrated that pleiotrophin (PTN), a secreted extracellular matrix-associated protein, could rescue the proliferative capacity and osteogenic differentiation of replicative senescent DPSCs.</p><p><strong>Objective: </strong>This study aimed to explore the influence and mechanism of PTN on dental pulp stem cells under H<sub>2</sub>O<sub>2</sub>-induced oxidative microenvironment.</p><p><strong>Materials and methods: </strong>DPSCs isolated from human third molars were treated with 100 μm H<sub>2</sub>O<sub>2</sub> for 4 h, mimicking the oxidative microenvironment. To investigate the influence of PTN on DPSC under H<sub>2</sub>O<sub>2</sub>-induced oxidative microenvironment, 50 pg/mL PTN was added in the culture medium for 48 h. RT-qPCR, western blotting, SA-β-gal staining, intracellular ROS production and immunofluorescence staining assays were used to analyse the cellular senescence, osteogenic differentiation capacity, oxidative stress conditions and possible mechanism.</p><p><strong>Results: </strong>H<sub>2</sub>O<sub>2</sub> treatment increased the ratio of SA-β-gal-positive DPSCs and upregulated the senescence-related gene expression, including P53, P21 and P16. PTN pretreatment downregulated the ratio of SA-β-gal-positive DPSCs and the expression of these genes. Besides, PTN pretreatment partially reversed the H<sub>2</sub>O<sub>2</sub>-induced decreased osteogenic differentiation potential of DPSCs, total antioxidant capacity and Nrf2 and HO-1 mRNA expression in DPSCs. Western blotting and immunofluorescent staining results indicated that PTN pretreatment enhanced the Nrf2 nuclear translocation under oxidative stress conditions and observable higher fluorescence signals in the nucleus denoted PTN and Nrf2 colocalisation. Western blotting results showed that PTN reversed the decreased expression of p-AKT in the H<sub>2</sub>O<sub>2-</sub>induced oxidative environment. However, the PI3K inhibitor LY294002 blocked the upregulated levels of total Nrf2. Immunofluorescence staining displayed that LY294002 also inhibited the nuclear translocation of Nrf2 which was enhanced under PTN pretreatment.</p><p><strong>Conclusions: </strong>This study demonstrated that PTN could prevent senescent damage induced by H<sub>2</sub>O<sub>2</sub> on DPSCs, mainly by combining with Nrf2 and enhancing its nuclear translocation.</p>","PeriodicalId":16605,"journal":{"name":"Journal of oral rehabilitation","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral rehabilitation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joor.13918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dental pulp stem cells (DPSCs) are widely used in research on dental tissue regeneration and systemic disease treatment. However, the oxidative microenvironment often causes cellular senescence, leading to decreased function. Our previous study demonstrated that pleiotrophin (PTN), a secreted extracellular matrix-associated protein, could rescue the proliferative capacity and osteogenic differentiation of replicative senescent DPSCs.
Objective: This study aimed to explore the influence and mechanism of PTN on dental pulp stem cells under H2O2-induced oxidative microenvironment.
Materials and methods: DPSCs isolated from human third molars were treated with 100 μm H2O2 for 4 h, mimicking the oxidative microenvironment. To investigate the influence of PTN on DPSC under H2O2-induced oxidative microenvironment, 50 pg/mL PTN was added in the culture medium for 48 h. RT-qPCR, western blotting, SA-β-gal staining, intracellular ROS production and immunofluorescence staining assays were used to analyse the cellular senescence, osteogenic differentiation capacity, oxidative stress conditions and possible mechanism.
Results: H2O2 treatment increased the ratio of SA-β-gal-positive DPSCs and upregulated the senescence-related gene expression, including P53, P21 and P16. PTN pretreatment downregulated the ratio of SA-β-gal-positive DPSCs and the expression of these genes. Besides, PTN pretreatment partially reversed the H2O2-induced decreased osteogenic differentiation potential of DPSCs, total antioxidant capacity and Nrf2 and HO-1 mRNA expression in DPSCs. Western blotting and immunofluorescent staining results indicated that PTN pretreatment enhanced the Nrf2 nuclear translocation under oxidative stress conditions and observable higher fluorescence signals in the nucleus denoted PTN and Nrf2 colocalisation. Western blotting results showed that PTN reversed the decreased expression of p-AKT in the H2O2-induced oxidative environment. However, the PI3K inhibitor LY294002 blocked the upregulated levels of total Nrf2. Immunofluorescence staining displayed that LY294002 also inhibited the nuclear translocation of Nrf2 which was enhanced under PTN pretreatment.
Conclusions: This study demonstrated that PTN could prevent senescent damage induced by H2O2 on DPSCs, mainly by combining with Nrf2 and enhancing its nuclear translocation.
期刊介绍:
Journal of Oral Rehabilitation aims to be the most prestigious journal of dental research within all aspects of oral rehabilitation and applied oral physiology. It covers all diagnostic and clinical management aspects necessary to re-establish a subjective and objective harmonious oral function.
Oral rehabilitation may become necessary as a result of developmental or acquired disturbances in the orofacial region, orofacial traumas, or a variety of dental and oral diseases (primarily dental caries and periodontal diseases) and orofacial pain conditions. As such, oral rehabilitation in the twenty-first century is a matter of skilful diagnosis and minimal, appropriate intervention, the nature of which is intimately linked to a profound knowledge of oral physiology, oral biology, and dental and oral pathology.
The scientific content of the journal therefore strives to reflect the best of evidence-based clinical dentistry. Modern clinical management should be based on solid scientific evidence gathered about diagnostic procedures and the properties and efficacy of the chosen intervention (e.g. material science, biological, toxicological, pharmacological or psychological aspects). The content of the journal also reflects documentation of the possible side-effects of rehabilitation, and includes prognostic perspectives of the treatment modalities chosen.