Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix.

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Journal of Tissue Engineering Pub Date : 2024-12-12 eCollection Date: 2024-01-01 DOI:10.1177/20417314241303818
Sareh Azadi, Mohammad Ali Yazdanpanah, Ali Afshari, Niloofar Alahdad, Solmaz Chegeni, Abdolhamid Angaji, Seyed Mahdi Rezayat, Shima Tavakol
{"title":"Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix.","authors":"Sareh Azadi, Mohammad Ali Yazdanpanah, Ali Afshari, Niloofar Alahdad, Solmaz Chegeni, Abdolhamid Angaji, Seyed Mahdi Rezayat, Shima Tavakol","doi":"10.1177/20417314241303818","DOIUrl":null,"url":null,"abstract":"<p><p>There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules. Combining ceramics and bioactive molecules, such as peptides derived from biological motifs of vital proteins, is the most effective approach to achieve optimal bone regeneration. These bioactive peptides induce various cellular processes and modify scaffold properties by mimicking the function of natural osteogenic, angiogenic and antibacterial biomolecules. The present review aims to consolidate the latest and most pertinent information on the advancements in bioactive peptides, including angiogenic, osteogenic, antimicrobial, and self-assembling peptide nanofibers for bone tissue regeneration, elucidating their biological effects and potential clinical implications.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241303818"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314241303818","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules. Combining ceramics and bioactive molecules, such as peptides derived from biological motifs of vital proteins, is the most effective approach to achieve optimal bone regeneration. These bioactive peptides induce various cellular processes and modify scaffold properties by mimicking the function of natural osteogenic, angiogenic and antibacterial biomolecules. The present review aims to consolidate the latest and most pertinent information on the advancements in bioactive peptides, including angiogenic, osteogenic, antimicrobial, and self-assembling peptide nanofibers for bone tissue regeneration, elucidating their biological effects and potential clinical implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物启发的合成肽生物材料通过对细胞外基质的生物模拟实现骨骼再生。
再生医学在骨骼再生方面取得了令人瞩目的进展,解决了组织缺失这一世界性健康问题。组织工程利用人体的自然能力,应用生物材料和生物活性分子来替代受损或丧失的组织并恢复其功能。虽然合成陶瓷克服了异体移植和异种移植所面临的一些挑战,但它们仍然需要必要的生长因子和生物分子。将陶瓷与生物活性分子(如从重要蛋白质的生物图案中提取的肽)相结合,是实现最佳骨再生效果的最有效方法。这些生物活性肽可诱导各种细胞过程,并通过模仿天然成骨、血管生成和抗菌生物分子的功能来改变支架的特性。本综述旨在整合生物活性肽(包括用于骨组织再生的促血管生成肽、促骨生成肽、抗菌肽和自组装肽纳米纤维)领域最新进展的相关信息,阐明其生物效应和潜在的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
期刊最新文献
Intranasal delivery of macrophage cell membrane cloaked biomimetic drug-nanoparticle system attenuates acute lung injury. Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix. Animal-derived free hydrolysate in animal cell culture: Current research and application advances. Meta-analysis of proteomics data from osteoblasts, bone, and blood: Insights into druggable targets, active factors, and potential biomarkers for bone biomaterial design. Decellularized extracellular matrix for organoid and engineered organ culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1