Gregory Nordahl , Sivert Dagenborg , Andrea D’Alessio , Eric Brand , Nikolas Vitaliti , Felix Trier , Daesung Park , Nini Pryds , Jørgen Sørhaug , Magnus Nord
{"title":"On the effect of precession for magnetic differential phase contrast imaging","authors":"Gregory Nordahl , Sivert Dagenborg , Andrea D’Alessio , Eric Brand , Nikolas Vitaliti , Felix Trier , Daesung Park , Nini Pryds , Jørgen Sørhaug , Magnus Nord","doi":"10.1016/j.micron.2024.103761","DOIUrl":null,"url":null,"abstract":"<div><div>The separation of diffraction effects from phase contrast is a major challenge for differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). The application of electron beam precession has previously been proven successful in homogenizing the direct beam and improving the imaging of both long-range electric and magnetic fields. However, magnetic STEM-DPC imaging performed in a low magnification (LM) STEM mode suffers from significant aberrations of the probe forming lens and the consequent impediment of small precession angles. By investigating the application of precession path segmentation to LM-STEM precessed scans for the imaging of LSMO and FeAl thin film samples, the initially reported benefits of precession were discovered to be less substantial than originally assumed. The segmentation methodology reveals that precession induced beam phase shifts account for a large part of the DPC induction profile smoothing, and the precession path is non-circular, leading to streaking artifacts in the reconstructed induction maps.</div></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"190 ","pages":"Article 103761"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432824001781","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The separation of diffraction effects from phase contrast is a major challenge for differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). The application of electron beam precession has previously been proven successful in homogenizing the direct beam and improving the imaging of both long-range electric and magnetic fields. However, magnetic STEM-DPC imaging performed in a low magnification (LM) STEM mode suffers from significant aberrations of the probe forming lens and the consequent impediment of small precession angles. By investigating the application of precession path segmentation to LM-STEM precessed scans for the imaging of LSMO and FeAl thin film samples, the initially reported benefits of precession were discovered to be less substantial than originally assumed. The segmentation methodology reveals that precession induced beam phase shifts account for a large part of the DPC induction profile smoothing, and the precession path is non-circular, leading to streaking artifacts in the reconstructed induction maps.
期刊介绍:
Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.