Tailoring microbial fitness through computational steering and CRISPRi-driven robustness regulation.

Cell systems Pub Date : 2024-12-18 Epub Date: 2024-12-11 DOI:10.1016/j.cels.2024.11.012
Bin Yang, Chao Wu, Yuxi Teng, Katherine J Chou, Michael T Guarnieri, Wei Xiong
{"title":"Tailoring microbial fitness through computational steering and CRISPRi-driven robustness regulation.","authors":"Bin Yang, Chao Wu, Yuxi Teng, Katherine J Chou, Michael T Guarnieri, Wei Xiong","doi":"10.1016/j.cels.2024.11.012","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread application of genetically modified microorganisms (GMMs) across diverse sectors underscores the pressing need for robust strategies to mitigate the risks associated with their potential uncontrolled escape. This study merges computational modeling with CRISPR interference (CRISPRi) to refine GMM metabolic robustness. Utilizing ensemble modeling, we achieved high-throughput in silico screening for enzymatic targets susceptible to expression alterations. Translating these insights, we developed functional CRISPRi, boosting fitness control via multiplexed gene knockdown. Our method, enhanced by an insulator-improved gRNA structure and an off-switch circuit controlling a compact Cas12m, resulted in rationally engineered strains with escape frequencies below National Institutes of Health standards. The effectiveness of this approach was confirmed under various conditions, showcasing its ability for secure GMM management. This research underscores the resilience of microbial metabolism, strategically modifying key nodes to halt growth without provoking significant resistance, thereby enabling more reliable and precise GMM control. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1133-1147.e4"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.11.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread application of genetically modified microorganisms (GMMs) across diverse sectors underscores the pressing need for robust strategies to mitigate the risks associated with their potential uncontrolled escape. This study merges computational modeling with CRISPR interference (CRISPRi) to refine GMM metabolic robustness. Utilizing ensemble modeling, we achieved high-throughput in silico screening for enzymatic targets susceptible to expression alterations. Translating these insights, we developed functional CRISPRi, boosting fitness control via multiplexed gene knockdown. Our method, enhanced by an insulator-improved gRNA structure and an off-switch circuit controlling a compact Cas12m, resulted in rationally engineered strains with escape frequencies below National Institutes of Health standards. The effectiveness of this approach was confirmed under various conditions, showcasing its ability for secure GMM management. This research underscores the resilience of microbial metabolism, strategically modifying key nodes to halt growth without provoking significant resistance, thereby enabling more reliable and precise GMM control. A record of this paper's transparent peer review process is included in the supplemental information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过计算引导和 CRISPRi- 驱动的稳健性调控来定制微生物的适应性。
转基因微生物(GMMs)在各行各业的广泛应用突出表明,迫切需要强有力的策略来降低其潜在失控逸散所带来的风险。本研究将计算建模与 CRISPR 干扰(CRISPRi)相结合,以完善转基因微生物代谢的稳健性。利用集合建模,我们实现了对易受表达改变影响的酶靶点的高通量硅学筛选。通过转化这些见解,我们开发出了功能性 CRISPRi,通过多重基因敲除提高了适应性控制。我们的方法通过改进绝缘体的 gRNA 结构和控制紧凑型 Cas12m 的关断开关电路得到了增强,从而合理地设计出了逃逸频率低于美国国立卫生研究院标准的菌株。这种方法的有效性在各种条件下都得到了证实,展示了其安全管理 GMM 的能力。这项研究强调了微生物新陈代谢的恢复能力,通过对关键节点进行战略性改造,使其停止生长而不产生明显的抗药性,从而实现更可靠、更精确的 GMM 控制。本论文的同行评审过程透明,记录见补充信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. A three-node Turing gene circuit forms periodic spatial patterns in bacteria. Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells. Optimized reporters for multiplexed detection of transcription factor activity. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1