Fabrication of Fe-doped biochar for Pb adsorption through pyrolysis of agricultural waste with red mud

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2025-02-01 DOI:10.1016/j.chemosphere.2024.143930
Jae-In Lee , Dongho Choi , Seungwon Kim , Seong-Jik Park , Eilhann E. Kwon
{"title":"Fabrication of Fe-doped biochar for Pb adsorption through pyrolysis of agricultural waste with red mud","authors":"Jae-In Lee ,&nbsp;Dongho Choi ,&nbsp;Seungwon Kim ,&nbsp;Seong-Jik Park ,&nbsp;Eilhann E. Kwon","doi":"10.1016/j.chemosphere.2024.143930","DOIUrl":null,"url":null,"abstract":"<div><div>Synthesis of metal-doped biochar have gained prominence due to their adsorption capability for heavy metal(loid)s. In this study, iron-doped biochar (Fe-BC) was fabricated through pyrolysis of waste mushroom substrate (WMS) with red mud (RM). The synthesised Fe-BC was employed as an adsorbent for Pb removal. During pyrolysis of WMS, introducing RM contributed to the enhanced syngas formation, this observation was attributed to the catalytic function of Fe species in RM. The Fe–BCs were made at three different temperatures (500, 600, and 700 °C), and their adsorption capabilities for Pb were evaluated. Among the prepared Fe–BCs, Fe-BC fabricated at 700 °C (Fe-BC-700) demonstrated the highest Pb adsorption performance (243.07 mg g<sup>−1</sup>). This performance primarily stemmed from the presence of zero-valent Fe and surface functional groups (–OH) in Fe-BC-700. Pb removal by Fe-BC-700 was dominated by surface precipitation and complexation mechanisms. Therefore, this study highlights a promising approach for producing an effective adsorbent for Pb removal from industrial wastewater by utilizing wastes such as RM and WMS.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"370 ","pages":"Article 143930"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524028388","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesis of metal-doped biochar have gained prominence due to their adsorption capability for heavy metal(loid)s. In this study, iron-doped biochar (Fe-BC) was fabricated through pyrolysis of waste mushroom substrate (WMS) with red mud (RM). The synthesised Fe-BC was employed as an adsorbent for Pb removal. During pyrolysis of WMS, introducing RM contributed to the enhanced syngas formation, this observation was attributed to the catalytic function of Fe species in RM. The Fe–BCs were made at three different temperatures (500, 600, and 700 °C), and their adsorption capabilities for Pb were evaluated. Among the prepared Fe–BCs, Fe-BC fabricated at 700 °C (Fe-BC-700) demonstrated the highest Pb adsorption performance (243.07 mg g−1). This performance primarily stemmed from the presence of zero-valent Fe and surface functional groups (–OH) in Fe-BC-700. Pb removal by Fe-BC-700 was dominated by surface precipitation and complexation mechanisms. Therefore, this study highlights a promising approach for producing an effective adsorbent for Pb removal from industrial wastewater by utilizing wastes such as RM and WMS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热解农业废弃物与赤泥制备掺铁生物炭以吸附铅
金属掺杂生物炭因其对重金属的吸附能力而受到广泛关注。在本研究中,铁掺杂生物炭(Fe-BC)通过废蘑菇底物(WMS)与赤泥(RM)的热解制备。用合成的Fe-BC作为吸附剂去除铅。在WMS的热解过程中,引入RM促进了合成气的生成,这一观察结果归因于RM中Fe种的催化作用。在500、600、700℃条件下制备fe - bc,考察其对Pb的吸附性能。在制备的Fe-BC中,在700℃制备的Fe-BC (Fe-BC-700)对Pb的吸附性能最高(243.07 mg g-1)。这种性能主要源于Fe- bc -700中存在零价铁和表面官能团(-OH)。Fe-BC-700对Pb的去除主要是表面沉淀和络合作用。因此,本研究强调了利用RM和WMS等废物生产有效的工业废水除铅吸附剂的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
The complex spatio-temporal dynamics of organic micropollutants in tidal rivers Biomimetic Nanoarchitectonics of Ag@TiO2/g-C3N4: Unveiling kinetic and mechanistic pathways for enhanced photocatalysis Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment: Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle Heavy metal concentrations suggest pollution risk varies between sea turtle species in the northwest Atlantic Ocean Enhanced polyhydroxyalkanoate biosynthesis by Cupriavidus sp. CY-1 utilizing CO2 under controlled non-explosive conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1