Jacob Kocher, Nicole Jandick, Derry Spragion, P. Joseph DeSena Jr, T. Matthew Womble, Katelyn Crizer, Nathan Stasko
{"title":"Dual Wavelength LEDs Induce Reactive Oxygen Species and Nitric Oxide That Inhibit the Production of Dihydrotestosterone by 5-α Reductase","authors":"Jacob Kocher, Nicole Jandick, Derry Spragion, P. Joseph DeSena Jr, T. Matthew Womble, Katelyn Crizer, Nathan Stasko","doi":"10.1002/jbio.202400388","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Androgenetic alopecia (AGA) causes balding in approximately 50% of adults. One primary cause of AGA is synthesis of dihydrotestosterone from testosterone by 5-α reductase. Systemic pharmaceutical interventions have potentially serious side effects, necessitating development of localized interventions. One such approach is administration of red light via low level light therapy (LLLT), which has promising clinical data. However, the LLLT mechanism of action remains unclear. We investigated the ability of LLLT to stimulate nitric oxide (NO) and the role of NO in inhibition of DHT synthesis. Our results show that red and red-orange light induce NO release in a cell-free platform. In A549 and HEK293T cells, we demonstrate 620 and 660 nm LED-emitted light stimulates the production of NO, reactive oxygen species (ROS), and decreases DHT synthesis. These results provide a plausible mechanism of action for LLLT employing LED-emitted red and red-orange wavelengths of light to treat AGA.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400388","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Androgenetic alopecia (AGA) causes balding in approximately 50% of adults. One primary cause of AGA is synthesis of dihydrotestosterone from testosterone by 5-α reductase. Systemic pharmaceutical interventions have potentially serious side effects, necessitating development of localized interventions. One such approach is administration of red light via low level light therapy (LLLT), which has promising clinical data. However, the LLLT mechanism of action remains unclear. We investigated the ability of LLLT to stimulate nitric oxide (NO) and the role of NO in inhibition of DHT synthesis. Our results show that red and red-orange light induce NO release in a cell-free platform. In A549 and HEK293T cells, we demonstrate 620 and 660 nm LED-emitted light stimulates the production of NO, reactive oxygen species (ROS), and decreases DHT synthesis. These results provide a plausible mechanism of action for LLLT employing LED-emitted red and red-orange wavelengths of light to treat AGA.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.